scholarly journals Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4578 ◽  
Author(s):  
Fayaz Hussain ◽  
Manzoore Elahi M. Soudagar ◽  
Asif Afzal ◽  
M.A. Mujtaba ◽  
I.M. Rizwanul Fattah ◽  
...  

This study considered the impacts of diesel–soybean biodiesel blends mixed with 3% cerium coated zinc oxide (Ce-ZnO) nanoparticles on the performance, emission, and combustion characteristics of a single cylinder diesel engine. The fuel blends were prepared using 25% soybean biodiesel in diesel (SBME25). Ce-ZnO nanoparticle additives were blended with SBME25 at 25, 50, and 75 ppm using the ultrasonication process with a surfactant (Span 80) at 2 vol.% to enhance the stability of the blend. A variable compression ratio engine operated at a 19.5:1 compression ratio (CR) using these blends resulted in an improvement in overall engine characteristics. With 50 ppm Ce-ZnO nanoparticle additive in SBME25 (SBME25Ce-ZnO50), the brake thermal efficiency (BTE) and heat release rate (HRR) increased by 20.66% and 18.1%, respectively; brake specific fuel consumption (BSFC) by 21.81%; and the CO, smoke, and hydrocarbon (HC) decreased by 30%, 18.7%, and 21.5%, respectively, compared to SBME25 fuel operation. However, the oxides of nitrogen slightly rose for all the nanoparticle added blends. As such, 50 ppm of Ce-ZnO nanoparticle in the blend is a potent choice for the enhancement of engine performance, combustion, and emission characteristics.

2021 ◽  
Vol 9 (1) ◽  
pp. 436-443
Author(s):  
M.Kannan, R.Balaji, R.T Sarath Babu, Chandrakant B. Shende, Ashish Selokar

The primary objective of this study is to discover the effects of injection timing on performance, emission and combustion characteristics effect of advanced and retarded injection timing of the engine fuelled with mahua oil biodiesel blends. The engine performance, combustion and emission characteristics of the mahua oil biodiesel blends (B20, B40, B60, B80and B100) are investigated in this experimentation without any modification of the diesel engine. At this advanced pressure t he efficiency of engine by means of CO, Unburned HC gases and smoke emissions with higher oxides of nitrogen was observed compared to diesel. The obtained results are compared with a neat diesel and mahua oil biodiesel blends are shown through the graphs. From this study, identifies optimum fuel blend of this work. Thus, the combustion of duration is similar in all variance in pressure. This research paved a way to bio-diesel in mahua oil mixture and draws best outcome in emission less and to maintain eco-friendly environment.  


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1489
Author(s):  
R. S. Gavhane ◽  
A. M. Kate ◽  
Manzoore Elahi M. Soudagar ◽  
V. D. Wakchaure ◽  
Sagar Balgude ◽  
...  

The present study examines the effect of silicon dioxide (SiO2) nano-additives on the performance and emission characteristics of a diesel engine fuelled with soybean biodiesel. Soybean biofuel was prepared using the transesterification process. The morphology of nano-additives was studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The Ultrasonication process was used for the homogeneous blending of nano-additives with biodiesel, while surfactant was used for the stabilisation of nano-additives. The physicochemical properties of pure and blended fuel samples were measured as per ASTM standards. The performance and emissions characteristics of different fuel samples were measured at different loading conditions. It was found that the brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) increased by 3.48–6.39% and 5.81–9.88%, respectively, with the addition of SiO2 nano-additives. The carbon monoxide (CO), hydrocarbon (HC) and smoke emissions for nano-additive added blends were decreased by 1.9–17.5%, 20.56–27.5% and 10.16–23.54% compared to SBME25 fuel blends.


Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


Author(s):  
Fatima Mohammed Ghanim ◽  
Ali Mohammed Hamdan Adam ◽  
Hazir Farouk

Abstract: There is growing interest to study the effect of blending various oxygenated additives with diesel or biodiesel fuel on engine performance and emission characteristics. This study aims to analyze the performance and exhaust emission of a four-stroke, four-cylinder diesel engine fueled with biodiesel-ethanol-diesel. Biodiesel was first produced from crude Jatropha oil, and then it was blended with ethanol and fossil diesel in different blend ratios (B10E10D80, B12.5E12.5D75, B15E15D70, B20E20D60 and B25E25D50). The engine performance and emission characteristics were studied at engine speeds ranging from 1200 to 2000 rpm. The results show that the brake specific fuel consumption increases while the brake power decreases as the percentage of biodiesel and ethanol increases in the blend. The exhaust emission analysis shows a reduction in CO2 emission and increase in NOx emission when the biodiesel -to- ethanol ratio increases in the blends, when compared with diesel as a reference fuel.


Author(s):  
Shailendra Sinha ◽  
Avinash Kumar Agarwal

Over the past several years, there has been increased interest in alternative diesel fuels to control emissions and provide energy security. Biodiesel is a fuel that can be made from renewable biological sources such as vegetable oils and animal fats, has been recognized as an environment friendly alternative to mineral diesel. In present investigation, rice bran oil (non-edible) was transesterified to methyl ester and reaction conditions for transesterifcation process for rice bran oil were optimized. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized as per ASTM norms (ASTM D6751) and found comparable to diesel. Steady state engine dynamometer test at full throttle conditions have been carried out to evaluate the performance and emission characteristics of a medium duty transportation DI diesel engine. Engine was fuelled with various blends of rice-bran oil biodiesel (ROME) and mineral diesel ranging from 5% biodiesel to 100% biodiesel (5, 10, 20, 30, 50, and 100%). Performance and emission data were compared to the baseline data obtained using mineral diesel. Same engine without any hardware modification has been adopted for tests on all fuel blends. The results of this experimental investigation showed that biodiesel and biodiesel blends exhibited almost similar torque and power characteristics. Biodiesel blends up to 20% produced slightly higher torque and improved performance. Improvement in fuel conversion efficiency was found for lower concentration blends i.e. up to 20%. Lowest efficiency was found for 100% biodiesel blend. All the biodiesel blends emitted lower total hydrocarbon, carbon monoxide emissions and smoke opacity but slightly higher NOx emissions during the full throttle tests. Emission tests with all the fuel blends have also been carried out using European 13 MODE test (ECE R49) procedure. Drastic reduction in THC and CO and slight increase in NOx was observed.


Author(s):  
R. S. Gavhane ◽  
A. M. Kate ◽  
A. A. Pawar ◽  
Manzoore Elahi M Soudagar ◽  
Nik-Nazri Nik-Ghazali ◽  
...  

The present study examines the effect of SiO2 nano-additives on the performance and emission characteristics of a diesel engine fuelled with soybean biodiesel. Soybean biofuel was prepared using the transesterification process. Nano-additives characterisations were done using different tests such as FESEM, XRD, EDS, etc., to study the morphology of nano-additives. For proper blending of nano-additives with biodiesel, the ultrasonication process was used. Surfactant was used for the stabilisation of nano-additives. After making all the combinations of nano fuel blends, physicochemical properties were measured as per ASTM standards. Performance and emissions readings were taken at different load conditions. It was found that with the addition of SiO2 nano-additives, brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) was increased by 3.48-6.39% and 5.81-9.88%, respectively. Significant reduction of CO, CO2, NOx, and smoke emissions were also observed compared to baseline fule due to better combustion efficiency with the use of SiO2 nano-additive.


Author(s):  
R.A. RaajKumar ◽  
S. Sriram ◽  
A.S. DivakarShetty ◽  
Sandeep Koundinya

As the years are passing by, the number of vehicles used for transportation is increasing. Due to this the environment is degrading and also the fossil fuels are depleting. This paper presents the performance and emission study on diesel engine using waste cooking oil with methanol as additive in various proportions. The properties such as the flash point, fire point, kinematic viscosity and the calorific values of the blends with and without additive are determined. Then all the biodiesel blends are used as fuel separately in the diesel engine. The engine performance as well as emission characteristics have been determined and compared at different blends. The blends with additive showed better properties and reduction in emission characteristics compared to diesel. The emission of CO is decreasing with increasing waste cooking oil and methanol quantity in the blends. Fuel consumption was more for the higher percentage blends with respect to increasing brake power. The emission of un-burnt hydrocarbon and oxides of nitrogen are reduced significantly with addition of methanol to fuel mixture due to higher oxygen and heat of vaporization.


Sign in / Sign up

Export Citation Format

Share Document