Spatial optimization of urban land and cropland based on land production capacity to balance cropland protection and ecological conservation

2021 ◽  
Vol 285 ◽  
pp. 112054
Author(s):  
Liye Wang ◽  
Weiwei Zheng ◽  
Lanping Tang ◽  
Siyu Zhang ◽  
Yaolin Liu ◽  
...  
Author(s):  
Gavin Schneider ◽  
Victoria Fast

The practice of urban agriculture (UA) is a unique food system model that localizes the production of sustainable, geographically appropriate food. The environmental benefits inherent in UA aligns with the emerging field of climate smart agriculture (CSA). However, the agro-industry focus of CSA is beyond the scope of most UA initiatives. Instead, we put forward the term “climate smart food” as a more appropriate framework to examine the environmental impact of food production in an urban context. The purpose of this study, rooted in the recognition of underutilized private urban land resources for UA, is to assess the potential of urban land to grow climate smart food. The Bowness neighbourhood in Calgary, Alberta is used as a case study. A geospatial process of constraint mapping was applied to analyze suitable private land space that could be converted from lawns to cultivated gardens. Using data from a local food cooperative as a benchmark for local urban production capacity, it was determined that six urban farms in Calgary produced roughly 8,200 pounds of food from private gardens in 2016. In the Bowness neighbourhood, 42 percent of the land was held as private turf grass, and produced only about 800 pounds of food. This type of analysis serves to quantify the magnitude of underutilized land within an urban boundary that could produce significant amounts of climate smart food.


2015 ◽  
pp. 5-24 ◽  
Author(s):  
B. Zamaraev ◽  
T. Marshova

The article examines the state of production capacity of Russian industry. It is shown that in spite of certain positive shifts, the rate of technological modernization in recent years has been insufficient for marked progressive changes in the capacity structure and quality. In contrast to the industrial growth after the crisis of 1998 that took place in the presence of significant reserves of capacity, the current level of idle capacity is much lower. The lack of mass input of modern and high-tech industries objectively limits the possibilities of import substitution and economic growth.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 507-515 ◽  
Author(s):  
David Skuse ◽  
Mark Windebank ◽  
Tafadzwa Motsi ◽  
Guillaume Tellier

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid, facilitating the cost-effective production of fibrils. Furthermore, this processing allows the utilization of robust industrial milling equipment. There are 40000 dry metric tons of mineral/microfbrillated (MFC) cellulose composite production capacity in operation across three continents. These mineral/MFC products have been cleared by the FDA for use as a dry and wet strength agent in coated and uncoated food contact paper and paperboard applications. We have previously reported that use of these mineral/MFC composite materials in fiber-based applications allows generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments and that the materials can be prepared using a range of fibers and minerals. Here, we: (1) report the development of new products that offer improved performance, (2) compare the performance of these new materials with that of a range of other nanocellulosic material types, (3) illustrate the performance of these new materials in reinforcement (paper and board) and viscosification applications, and (4) discuss product form requirements for different applications.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 631-638
Author(s):  
FREDERIC KREPLIN ◽  
HANS-JOACHIM PUTZ ◽  
SAMUEL SCHABEL

Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recycling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspension and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugating medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.


Sign in / Sign up

Export Citation Format

Share Document