scholarly journals The nexus between COVID-19 deaths, air pollution and economic growth in New York state: Evidence from Deep Machine Learning

2021 ◽  
Vol 286 ◽  
pp. 112241 ◽  
Author(s):  
Cosimo Magazzino ◽  
Marco Mele ◽  
Samuel Asumadu Sarkodie
Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1303
Author(s):  
Wei-Ting Hung ◽  
Cheng-Hsuan (Sarah) Lu ◽  
Stefano Alessandrini ◽  
Rajesh Kumar ◽  
Chin-An Lin

In New York State (NYS), episodic high fine particulate matter (PM2.5) concentrations associated with aerosols originated from the Midwest, Mid-Atlantic, and Pacific Northwest states have been reported. In this study, machine learning techniques, including multiple linear regression (MLR) and artificial neural network (ANN), were used to estimate surface PM2.5 mass concentrations at air quality monitoring sites in NYS during the summers of 2016–2019. Various predictors were considered, including meteorological, aerosol, and geographic predictors. Vertical predictors, designed as the indicators of vertical mixing and aloft aerosols, were also applied. Overall, the ANN models performed better than the MLR models, and the application of vertical predictors generally improved the accuracy of PM2.5 estimation of the ANN models. The leave-one-out cross-validation results showed significant cross-site variations and were able to present the different predictor-PM2.5 correlations at the sites with different PM2.5 characteristics. In addition, a joint analysis of regression coefficients from the MLR model and variable importance from the ANN model provided insights into the contributions of selected predictors to PM2.5 concentrations. The improvements in model performance due to aloft aerosols were relatively minor, probably due to the limited cases of aloft aerosols in current datasets.


2021 ◽  
pp. 118513
Author(s):  
Wei-Ting Hung ◽  
Cheng-Hsuan (Sarah) Lu ◽  
Stefano Alessandrini ◽  
Rajesh Kumar ◽  
Chin-An Lin

Author(s):  
Difan Zou ◽  
Lingxiao Wang ◽  
Pan Xu ◽  
Jinghui Chen ◽  
Weitong Zhang ◽  
...  

AbstractWe propose a new epidemic model (SuEIR) for forecasting the spread of COVID-19, including numbers of confirmed and fatality cases at national and state levels in the United States. Specifically, the SuEIR model is a variant of the SEIR model by taking into account the untested/unreported cases of COVID-19, and trained by machine learning algorithms based on the reported historical data. Besides providing basic projections for confirmed and fatality cases, the proposed SuEIR model is also able to predict the peak date of active cases, and estimate the basic reproduction number (). In particular, the forecasts based on our model suggest that the peak date of the US, New York state, and California state are 06/01/2020, 05/10/2020, and 07/01/2020 respectively. In addition, the estimated of the US, New York state, and California state are 2.5, 3.6 and 2.2 respectively. The prediction results for all states in the US can be found on our project website: https://covid19.uclaml.org, which are updated on a weekly basis, and have been adopted by the Centers for Disease Control and Prevention (CDC) for COVID-19 death forecasts (https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html).


Sign in / Sign up

Export Citation Format

Share Document