Water diversion induces more changes in bacterial and archaeal communities of river sediments than seasonality

2021 ◽  
Vol 293 ◽  
pp. 112876
Author(s):  
Jiali Lv ◽  
Ruiqiang Yuan ◽  
Shiqin Wang
2021 ◽  
Vol 9 (4) ◽  
pp. 782
Author(s):  
Jiali Lv ◽  
Yangdan Niu ◽  
Ruiqiang Yuan ◽  
Shiqin Wang

In recent years, different responses of archaea and bacteria to environmental changes have attracted increasing scientific interest. In the mid-latitude region, Fen River receives water transferred from the Yellow River, electrical conductivity (EC), concentrations of Cl− and Na+ in water, total phosphorus (TP), and Olsen phosphorus (OP) in sediments were significantly affected by water transfer. Meanwhile, temperature and oxidation-reduction potential (ORP) of water showed significant seasonal variations. Based on 16S rRNA high-throughput sequencing technology, the composition of bacteria and archaea in sediments was determined in winter and summer, respectively. Results showed that the dominance of bacterial core flora decreased and that of archaeal core flora increased after water diversion. The abundance and diversity of bacterial communities in river sediments were more sensitive to anthropogenic and naturally induced environmental changes than that of archaeal communities. Bacterial communities showed greater resistance than archaeal communities under long-term external disturbances, such as seasonal changes, because of rich species composition and complex community structure. Archaea were more stable than bacteria, especially under short-term drastic environmental disturbances, such as water transfer, due to their insensitivity to environmental changes. These results have important implications for understanding the responses of bacterial and archaeal communities to environmental changes in river ecosystems affected by water diversion.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 550 ◽  
Author(s):  
Huili Feng ◽  
Jiahuan Guo ◽  
Weifeng Wang ◽  
Xinzhang Song ◽  
Shuiqiang Yu

Understanding the composition and diversity of soil microorganisms that typically mediate the soil biogeochemical cycle is crucial for estimating greenhouse gas flux and mitigating global changes in plantation forests. Therefore, the objectives of this study were to investigate changes in diversity and relative abundance of bacteria and archaea with soil profiles and the potential factors influencing the vertical differentiation of microbial communities in a poplar plantation. We investigated soil bacterial and archaeal community compositions and diversities by 16S rRNA gene Illumina MiSeq sequencing at different depths of a poplar plantation forest in Chenwei forest farm, Sihong County, Jiangsu, China. More than 882,422 quality-filtered 16S rRNA gene sequences were obtained from 15 samples, corresponding to 34 classified phyla and 68 known classes. Ten major bacterial phyla and two archaeal phyla were found. The diversity of bacterial and archaeal communities decreased with depth of the plantation soil. Analysis of variance (ANOVA) of relative abundance of microbial communities exhibited that Nitrospirae, Verrucomicrobia, Latescibacteria, GAL15, SBR1093, and Euryarchaeota had significant differences at different depths. The transition zone of the community composition between the surface and subsurface occurred at 10–20 cm. Overall, our findings highlighted the importance of depth with regard to the complexity and diversity of microbial community composition in plantation forest soils.


2016 ◽  
Vol 94 (suppl_2) ◽  
pp. 53-54 ◽  
Author(s):  
A. L. Knoell ◽  
C. L. Anderson ◽  
A. C. Pesta ◽  
G. E. Erickson ◽  
T. J. Klopfenstein ◽  
...  

2010 ◽  
Vol 5 (3) ◽  
pp. 389-402 ◽  
Author(s):  
Frank Rasche ◽  
Daniela Knapp ◽  
Christina Kaiser ◽  
Marianne Koranda ◽  
Barbara Kitzler ◽  
...  

Anaerobe ◽  
2019 ◽  
Vol 59 ◽  
pp. 145-153 ◽  
Author(s):  
E.A.F. Vasconcelos ◽  
S.T. Santaella ◽  
M.B. Viana ◽  
A.B. dos Santos ◽  
G.C. Pinheiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document