Features of aerobic granular sludge formation treating fluctuating industrial saline wastewater at pilot scale

2021 ◽  
Vol 296 ◽  
pp. 113135
Author(s):  
P. Carrera ◽  
T. Casero-Díaz ◽  
C.M. Castro-Barros ◽  
R. Méndez ◽  
A. Val del Río ◽  
...  
2017 ◽  
Vol 77 (4) ◽  
pp. 1107-1114 ◽  
Author(s):  
Benjamin J. Thwaites ◽  
Ben van den Akker ◽  
Petra J. Reeve ◽  
Michael D. Short ◽  
Nirmala Dinesh ◽  
...  

Abstract The successful development of aerobic granular sludge (AGS) for secondary wastewater treatment has been linked to a dedicated anaerobic feeding phase, which enables key microbes such as poly-phosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms to gain a competitive advantage over floc-forming organisms. The application of AGS to treat high-saline sewage and its subsequent impacts on microbial ecology, however, are less well understood. In this study, the impacts of high-saline sewage on AGS development, performance and ecology were investigated using molecular microbiology methods. Two feeding strategies were compared at pilot scale: a full (100%) anaerobic feed; and a partial (33%) anaerobic feed. The results were compared to a neighbouring full-scale conventional activated sludge (CAS) system (100% aerobic). We observed that AGS developed under decreased anaerobic contact showed a comparable formation, stability and nitrogen removal performance to the 100% anaerobically fed system. Analysis of the microbial ecology showed that the altered anaerobic contact had minimal effect on the abundances of the functional nitrifying and denitrifying bacteria and Archaea; however, there were notable ecological differences when comparing different sized granules. In contrast to previous work, a large enrichment in PAOs in AGS was not observed in high-saline wastewater, which coincided with poor observed phosphate removal performance. Instead, AGS exhibited a substantial enrichment in sulfide-oxidising bacteria, which was complemented by elemental analysis that identified the presence of elemental sulfur precipitation. The potential role for these organisms in AGS treating high-saline wastewater is discussed.


2020 ◽  
Vol 6 (7) ◽  
pp. 1902-1916 ◽  
Author(s):  
M. Sarvajith ◽  
Y. V. Nancharaiah

Aerobic granular sludge was cultivated from the halophilic bacterial community of seawater. This strategy utilized autochthonous bacteria for effectively removing nitrogen and phosphate from saline wastewaters.


2020 ◽  
Vol 256 ◽  
pp. 109970 ◽  
Author(s):  
Silvio Luiz de Sousa Rollemberg ◽  
Tasso Jorge Tavares Ferreira ◽  
Paulo Igor Milen Firmino ◽  
André Bezerra dos Santos

2015 ◽  
Vol 13 (3) ◽  
pp. 746-757 ◽  
Author(s):  
Bei Long ◽  
Chang-zhu Yang ◽  
Wen-hong Pu ◽  
Jia-kuan Yang ◽  
Guo-sheng Jiang ◽  
...  

Mature aerobic granular sludge (AGS) was inoculated for the start-up of a pilot-scale sequencing batch reactor for the treatment of high concentration solvent recovery raffinate (SRR). The proportion of simulated wastewater (SW) (w/w) in the influent gradually decreased to zero during the operation, while volume of SRR gradually increased from zero to 10.84 L. AGS was successfully domesticated after 48 days, which maintained its structure during the operation. The domesticated AGS was orange, irregular, smooth and compact. Sludge volume index (SVI), SV30/SV5, mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS), extracellular polymeric substances, proteins/polysaccharides, average particle size, granulation rate, specific oxygen utilization rates (SOUR)H and (SOUR)N of AGS were about 38 mL/g, 0.97, 0.52, 39.73 mg/g MLVSS, 1.17, 1.51 mm, 96.66%, 47.40 mg O2/h g volatile suspended solids (VSS) and 8.96 mg O2/h g VSS, respectively. Good removal effect was achieved by the reactor. Finally, the removal rates of chemical oxygen demand (COD), total inorganic nitrogen (TIN), NH4+-N and total phosphorus (TP) were more than 98%, 96%, 97% and 97%, respectively. The result indicated gradually increasing the proportion of real wastewater in influent was a useful domestication method, and the feasibility of AGS for treatment of high C/N ratio industrial wastewater.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


Sign in / Sign up

Export Citation Format

Share Document