Transfer parameters of radionuclides from soil to plants at the area of craters produced by underground nuclear explosions at the Semipalatinsk test site

2021 ◽  
Vol 237 ◽  
pp. 106684
Author(s):  
N.V. Larionova ◽  
S.N. Lukashenko ◽  
O.N. Lyakhova ◽  
А.К. Aidarkhanova ◽  
A.Ye. Kunduzbayeva ◽  
...  
2019 ◽  
Vol 2 (2) ◽  
pp. 209-215
Author(s):  
Andrey Belyashov ◽  
Vladimir Suvorov ◽  
Elena Melnik

Results of seismic investigation of the underground nuclear explosions area at the Semipalatinsk test site are considered. Using refracted waves method subsurface zones of surrounding geological media disintegration were revealed. These zones are characterized by decrease of P and S waves velocity on the value of 0,5-1,5 km/s and increase of Poisson coefficient on 0,07. Estimation of the induced fracturing was done; parameter of crack density measures up to 0,45.


1997 ◽  
Vol 87 (6) ◽  
pp. 1563-1575
Author(s):  
Frode Ringdal

Abstract A study of available seismic data shows that all but one of the 42 known underground nuclear explosions at Novaya Zemlya have been detected and located by stations in the global seismic network. During the past 30 years, only one seismic event in this area has been unambiguously classified as an earthquake (1 August 1986, mb = 4.3). Several other small events, most of which are thought to be either chemical explosions or aftereffects of nuclear explosions, have also been detected. Since 1990, a network of sensitive regional arrays has been installed in northern Europe in preparation for the global seismic monitoring network under a comprehensive nuclear test ban treaty (CTBT). This regional network has provided a detection capability for Novaya Zemlya that is shown to be close to mb = 2.5. Three low-magnitude events have been detected and located during this period, as discussed in this article: 31 December 1992 (mb = 2.7), 13 June 1995 (mb = 3.5), and 13 January 1996 (mb = 2.4). To classify the source types of these events has proved very difficult. Thus, even for the mb = 3.5 event in 1995, we have been unable to provide a confident classification of the source as either an earthquake or explosion using the available discriminants. A study of mb magnitude in different frequency bands shows, as expected, that the calculation of mb at regional distances needs to take into account source-scaling effects at high frequencies. Thus, when comparing a 4 to 8 or 8 to 16 Hz filter band to a “teleseismic” 2 to 4 Hz band, the smaller events have, relatively speaking, significantly more high-frequency energy (up to 0.5 mb units) than the larger events. This suggests that a P-wave spectral magnitude scale might be appropriate. The problem of accurately locating small events using a sparse array network is addressed using the 13 January 1996 event, which was detected by only two arrays, as an illustrative example. Our analysis demonstrates the importance of using accurately calibrated regional travel-time curves and, at the same time, illustrates how array processing can be used to identify an interfering phase from a local disturbance, thereby avoiding location errors due to erroneous phase readings.


1983 ◽  
Vol 73 (2) ◽  
pp. 593-613
Author(s):  
Terry C. Wallace ◽  
Donald V. Helmberger ◽  
Gladys R. Engen

abstract In this paper, we study the long-period body waves at regional and upper mantle distances from large underground nuclear explosions at Pahute Mesa, Nevada Test Site. A comparison of the seismic records from neighboring explosions shows that the more recent events have much simpler waveforms than those of the earlier events. In fact, many of the early events produced waveforms which are very similar to those produced by shallow, moderate-size, strike-slip earthquakes; the phase sP is particularly obvious. The waveforms of these explosions can be modeled by assuming that the explosion is accompanied by tectonic release represented by a double couple. A clear example of this phenomenon is provided by a comparison of GREELEY (1966) and KASSERI (1975). These events are of similar yields and were detonated within 2 km of each other. The GREELEY records can be matched by simply adding synthetic waveforms appropriate for a shallow strike-slip earthquake to the KASSERI observations. The tectonic release for GREELEY has a moment of 5 ՠ1024 dyne-cm and is striking approximately 340°. The identification of the sP phase at upper mantle distances indicates that the source depth is 4 km or less. The tectonic release time function has a short duration (less than 1 sec). A comparison of these results with well-studied strike-slip earthquakes on the west coast and eastern Nevada indicate that, if tectonic release is triggered fault motion, then the tectonic release is relatively high stress drop, on the order of several hundred bars. It is possible to reduce these stress drops by a factor of 2 if the tectonic release is a driven fault; i.e., rupturing with the P velocity. The region in which the stress is released for a megaton event has a radius of about 4 km. Pahute Mesa events which are detonated within this radius of a previous explosion have a substantially reduced tectonic release.


1972 ◽  
Vol 62 (6) ◽  
pp. 1411-1423 ◽  
Author(s):  
E. R. Engdahl

abstract Seismic effects of the underground nuclear explosions MILROW (October 1969, about 1 megaton) and CANNIKIN (November 1971, under 5 megatons) were monitored by a network of continuously recording, high-frequency, high-gain seismographs located on Amchitka and nearby islands. Each explosion was immediately followed by hundreds of small, discrete events (mB < 4), of similar focal mechanism and with a characteristic low-frequency signature, which were apparently related to the deterioration of the explosion cavity. This activity intensified, then terminated within minutes of a large, complex multiple event and concurrent formation of a surface subsided area that signaled complete collapse of the explosion cavity (MILROW, 37 hr; CANNIKIN, 38 hr). A number of small explosion-stimulated tectonic events, apparently unrelated to the collapse phenomenon, occurred intermittently for several weeks following each explosion—near the explosion cavity and up to 13 km southeast of CANNIKIN ground zero along the Island. These events were confined to the upper crust of the Island, had characteristic high-frequency signatures, and, near the Rifle Range Fault, had focal mechanisms which could be correlated with pre-existing faulting. The evidence points to a short-term interaction of the explosions with local ambient tectonic stresses. Because these stresses are of relatively low level on Amchitka, the observed seismic effects were significantly less extensive and smaller than similar effects reported from high-yield explosions at the Nevada Test Site. Continuous monitoring of the natural seismicity of the Amchitka region since 1969 has not revealed other evidence for an interaction between either MILROW or CANNIKIN and natural tectonic processes. The structural stability and apparent low level of stress in the upper crust of Amchitka suggest that the Island effectively is seismically decoupled from the active subduction zone below.


Sign in / Sign up

Export Citation Format

Share Document