scholarly journals Evaluation of several relevant fractionation processes as possible explanation for radioxenon isotopic activity ratios in samples taken near underground nuclear explosions in shafts and tunnels

2021 ◽  
Vol 237 ◽  
pp. 106698
Author(s):  
S. Michelle Bourret ◽  
Edward M. Kwicklis ◽  
Philip H. Stauffer
2020 ◽  
Author(s):  
Dylan Robert Harp ◽  
Suzanne Michelle Bourret ◽  
Philip H. Stauffer ◽  
Ed Michael Kwicklis

1997 ◽  
Vol 87 (6) ◽  
pp. 1563-1575
Author(s):  
Frode Ringdal

Abstract A study of available seismic data shows that all but one of the 42 known underground nuclear explosions at Novaya Zemlya have been detected and located by stations in the global seismic network. During the past 30 years, only one seismic event in this area has been unambiguously classified as an earthquake (1 August 1986, mb = 4.3). Several other small events, most of which are thought to be either chemical explosions or aftereffects of nuclear explosions, have also been detected. Since 1990, a network of sensitive regional arrays has been installed in northern Europe in preparation for the global seismic monitoring network under a comprehensive nuclear test ban treaty (CTBT). This regional network has provided a detection capability for Novaya Zemlya that is shown to be close to mb = 2.5. Three low-magnitude events have been detected and located during this period, as discussed in this article: 31 December 1992 (mb = 2.7), 13 June 1995 (mb = 3.5), and 13 January 1996 (mb = 2.4). To classify the source types of these events has proved very difficult. Thus, even for the mb = 3.5 event in 1995, we have been unable to provide a confident classification of the source as either an earthquake or explosion using the available discriminants. A study of mb magnitude in different frequency bands shows, as expected, that the calculation of mb at regional distances needs to take into account source-scaling effects at high frequencies. Thus, when comparing a 4 to 8 or 8 to 16 Hz filter band to a “teleseismic” 2 to 4 Hz band, the smaller events have, relatively speaking, significantly more high-frequency energy (up to 0.5 mb units) than the larger events. This suggests that a P-wave spectral magnitude scale might be appropriate. The problem of accurately locating small events using a sparse array network is addressed using the 13 January 1996 event, which was detected by only two arrays, as an illustrative example. Our analysis demonstrates the importance of using accurately calibrated regional travel-time curves and, at the same time, illustrates how array processing can be used to identify an interfering phase from a local disturbance, thereby avoiding location errors due to erroneous phase readings.


2021 ◽  
Author(s):  
Mohamed Freeshah ◽  
Xiaohong Zhang ◽  
Erman Şentürk ◽  
Xiaodong Ren ◽  
Muhammad Arqim Adil ◽  
...  

<p>Natural hazards such as shallow earthquakes and volcanic explosions are known to generate acoustic and gravity waves at infrasonic velocity to propagate in the atmosphere layers. These waves could induce the layers of the ionosphere by change the electron density based on the neutral particles and free electrons coupling. Recently, some studies have dealt with some manmade hazards such as buried explosions and underground nuclear explosions which could cause a trigger to the ionosphere. The Global Navigation Satellite Systems (GNSS) provide a good way to measure ionospheric total electron content (TEC) through the line of sight (LOS) from satellite to receiver. The carrier-to-code leveling (CCL) technique is carried out for each continuous arc where CCL eliminates potential ambiguity influence and it degrades the pseudo-range noise. Meanwhile, the CCL retains high precision in the carrier-phase. In this study, we focus on the Beirut Explosion on August 4, 2020, to check slant TEC (STEC) variations that may be associated with the blast of Beirut Port. The TECs were analyzed through the Morlet wavelet to check the possible ionospheric response to the blast. An acoustic‐gravity wave could be generated by the event which could disturb the ionosphere through coupling between solid earth-atmosphere-ionosphere during the explosion. To verify TEC disturbances are not associated with space weather, disturbance storm-time (Dst), and Kp indices were investigated before, during, and after the explosion. The steady-state of space weather before and during the event indicated that the observed variations of TEC sequences were caused by the ammonium nitrate explosion. There was a large initial explosion, followed by a series of smaller blasts, about ~30 seconds, a colossal explosion has happened, a supersonic blast wave radiating through Beirut City. As a result of the chemistry behind ammonium nitrate’s explosive, a mushroom cloud was sent into the air. We suggest that these different explosions in strength and time could be the reason for different time arrival of the detected ionospheric disturbances over GNSS ground-based stations.</p>


1983 ◽  
Vol 73 (2) ◽  
pp. 593-613
Author(s):  
Terry C. Wallace ◽  
Donald V. Helmberger ◽  
Gladys R. Engen

abstract In this paper, we study the long-period body waves at regional and upper mantle distances from large underground nuclear explosions at Pahute Mesa, Nevada Test Site. A comparison of the seismic records from neighboring explosions shows that the more recent events have much simpler waveforms than those of the earlier events. In fact, many of the early events produced waveforms which are very similar to those produced by shallow, moderate-size, strike-slip earthquakes; the phase sP is particularly obvious. The waveforms of these explosions can be modeled by assuming that the explosion is accompanied by tectonic release represented by a double couple. A clear example of this phenomenon is provided by a comparison of GREELEY (1966) and KASSERI (1975). These events are of similar yields and were detonated within 2 km of each other. The GREELEY records can be matched by simply adding synthetic waveforms appropriate for a shallow strike-slip earthquake to the KASSERI observations. The tectonic release for GREELEY has a moment of 5 ՠ1024 dyne-cm and is striking approximately 340°. The identification of the sP phase at upper mantle distances indicates that the source depth is 4 km or less. The tectonic release time function has a short duration (less than 1 sec). A comparison of these results with well-studied strike-slip earthquakes on the west coast and eastern Nevada indicate that, if tectonic release is triggered fault motion, then the tectonic release is relatively high stress drop, on the order of several hundred bars. It is possible to reduce these stress drops by a factor of 2 if the tectonic release is a driven fault; i.e., rupturing with the P velocity. The region in which the stress is released for a megaton event has a radius of about 4 km. Pahute Mesa events which are detonated within this radius of a previous explosion have a substantially reduced tectonic release.


1964 ◽  
Vol 54 (6A) ◽  
pp. 2087-2098
Author(s):  
V. A. Jenschke ◽  
J. Penzien

abstract Due to inertial and damping characteristics of strong motion seismographs, recorded ground motion accelerograms may in some cases be sufficiently in error to significantly affect the results obtained when generating standard response or Fourier spectra. Therefore, the objectives of this paper are to present an analytical method of generating standard spectra which will eliminate the above instrumental error and to show the significance of this error by presenting some sample results obtained from accelerograms representing both earthquakes and underground nuclear explosions.


2018 ◽  
Vol 214 (3) ◽  
pp. 1865-1885 ◽  
Author(s):  
Junghyun Park ◽  
Il-Young Che ◽  
Brian Stump ◽  
Chris Hayward ◽  
Fransiska Dannemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document