scholarly journals Heat transfer study of mechanical face seal and fin by analytical method

2018 ◽  
Vol 21 (3) ◽  
pp. 380-388 ◽  
Author(s):  
M. Mosavat ◽  
R. Moradi ◽  
M. Rahimi Takami ◽  
M. Barzegar Gerdroodbary ◽  
D.D. Ganji
2007 ◽  
Vol 129 (4) ◽  
pp. 841-850 ◽  
Author(s):  
Sébastien Thomas ◽  
Noël Brunetière ◽  
Bernard Tournerie

A numerical modeling of thermoelastohydrodynamic mechanical face seal behavior is presented. The model is an axisymmetric one and it is confined to high pressure compressible flow. It takes into account the behavior of a real gas and includes thermal and inertia effects, as well as a choked flow condition. In addition, heat transfer between the fluid film and the seal faces is computed, as are the elastic and thermal distortions of the rings. In the first part of this paper, the influence of the coning angle on mechanical face seal characteristics is studied. In the second part, the influence of the solid distortions is analyzed. It is shown that face distortions strongly modify both the gap geometry and the mechanical face seal’s performance. The mechanical distortions lead to a converging gap, while the gas expansion, by cooling the fluid, creates a diverging gap.


Author(s):  
André Parfait Nyemeck ◽  
Noël Brunetière ◽  
Bernard Tournerie

In this paper, the behavior of a mechanical face seal is analyzed for different operating conditions and designs. For that, a theoretical model including a multiscale approach of the mixed lubrication regime, heat transfer and deformation of the seal rings is used. It has been possible to clearly identify the three different lubrication regimes of a mechanical seal: the mixed lubrication where the friction coefficient decreases, the rough hydrodynamic regime corresponding to an increasing friction and then the thermo-elasto-hydrodynamic (TEHD) regime for which the coefficient of friction is approximately constant. In this work, the influence of the fluid pressure, the seal roughness height, the balance ratio, the rings materials, the dry friction coefficient and viscosity are respectively examined. Generally speaking, the variation of these parameters affects the location of the optimum value of the friction coefficient in the mixed lubrication regime. In the TEHD regime, the temperature is mainly influenced by the materials and the fluid viscosity, which control the amplitude of deformation and heat transfer. A dimensionless parametric analysis has been carried out in order to perform an overall discussion of the results. It is shown that the mixed and rough hydrodynamic lubrication regimes are controlled by the modified duty parameter, while the TEHD regime is controlled by the sealing parameter.


Author(s):  
K. Ayadi ◽  
N. Brunetière ◽  
B. Tournerie ◽  
A. Maoui

An experimental study quantifying the thermal behavior of a mechanical seal is performed. Temperature measurements are obtained using embedded thermocouples within the stator at different locations, and the tests are carried out at different sealed fluid pressures and rotary shaft speeds. Furthermore, an inverse method is used to calculate the heat transfer from the measured local temperatures. The Nusselt number is calculated along the wetted surface as a function of operating conditions; the obtained values are discussed in comparison to previous works. Our results demonstrate that the amplitude of the thermal effects is highly dependent on the operating conditions. The temperature rise being increased by 600% when the rotating speed is raised from 1000 to 6000 rpm and the fluid pressure from 1 to 5 MPa. Moreover, the temperature can vary by several degrees when the distance from the wetted diameter (cooled by convection) and the friction face (heat source) is varied from less than 2 mm.


2009 ◽  
Vol 48 (4) ◽  
pp. 781-794 ◽  
Author(s):  
Noël Brunetière ◽  
Benoit Modolo

Author(s):  
Rafael Mafra ◽  
Sandro Metrevelle Marcondes de Lima e Silva ◽  
Fernando Belchior
Keyword(s):  

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 120
Author(s):  
Panteleimon Bakalis ◽  
Polycarpos Papadopoulos ◽  
Panayiotis Vafeas

We studied the laminar fully developed ferrofluid flow and heat transfer phenomena of an otherwise magnetic fluid into a vertical annular duct of circular cross-section and uniform temperatures on walls which were subjected to a transverse external magnetic field. A computational algorithm was used, which coupled the continuity, momentum, energy, magnetization and Maxwell’s equations, accompanied by the appropriate conditions, using the continuity–vorticity–pressure (C.V.P.) method and a non-uniform grid. The results were obtained for different values of field strength and particles’ volumetric concentration, wherein the effects of the magnetic field on the ferrofluid flow and the temperature are revealed. It is shown that the axial velocity distribution is highly affected by the field strength and the volumetric concentration, the axial pressure gradient depends almost linearly on the field strength, while the heat transfer significantly increases due to the generated secondary flow.


Sign in / Sign up

Export Citation Format

Share Document