scholarly journals Densification of surface-modified silicon carbide powder by spark-plasma-sintering

Author(s):  
Alejandro Montón ◽  
Francis Maury ◽  
Geoffroy Chevallier ◽  
Claude Etournès ◽  
Marc Ferrato ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3558
Author(s):  
Mateusz Petrus ◽  
Jarosław Woźniak ◽  
Tomasz Cygan ◽  
Artur Lachowski ◽  
Dorota Moszczyńska ◽  
...  

This article presents new findings related to the problem of the introduction of MXene phases into the silicon carbide matrix. The addition of MXene phases, as shown by the latest research, can significantly improve the mechanical properties of silicon carbide, including fracture toughness. Low fracture toughness is one of the main disadvantages that significantly limit its use. As a part of the experiment, two series of composites were produced with the addition of 2D-Ti3C2Tx MXene and 2D-Ti3C2Tx surface-modified MXene with the use of the sol-gel method with a mixture of Y2O3/Al2O3 oxides. The composites were obtained with the powder metallurgy technique and sintered with the Spark Plasma Sintering method at 1900 °C. The effect adding MXene phases had on the mechanical properties and microstructure of the produced sinters was investigated. Moreover, the influence of the performed surface modification on changes in the properties of the produced composites was determined. The analysis of the obtained results showed that during sintering, the MXene phases oxidize with the formation of carbon flakes playing the role of reinforcement. The influence of the Y2O3/Al2O3 layer on the structure of carbon flakes and the higher quality of the interface was also demonstrated. This was reflected in the higher mechanical properties of composites with the addition of modified Ti3C2Tx. Composites with 1 wt.% addition of Ti3C2Tx M are characterized with a fracture toughness of 5 MPa × m0.5, which is over 50% higher than in the case of the reference sample and over 15% higher than for the composite with 2.5 wt.% addition of Ti3C2Tx, which showed the highest fracture toughness in this series.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Eugene A. Olevsky ◽  
Stephen M. Rolfing ◽  
Andrey L. Maximenko

2014 ◽  
Vol 616 ◽  
pp. 32-36 ◽  
Author(s):  
Zhen Hua He ◽  
Hirokazu Katsui ◽  
Rong Tu ◽  
Takashi Goto

Silica (SiO2) nanolayer was coated on silicon carbide (SiC) powder by rotary chemical vapor deposition (RCVD). The SiC/SiO2 composite were consolidated by spark plasma sintering (SPS) at 1923 K using the SiO2 coated SiC powder. The relative density and hardness of the SiC/SiO2 composites increased with increasing SiO2 content, and were 97% and 17 GPa, respectively, at SiO2 content of 22 mass%. The relative density and hardness of a composite consolidated using the mixture powders of SiC and SiO2 (22 mass%) at 1923 K were 81% and 8 GPa, respectively.


2015 ◽  
Vol 88 (5) ◽  
pp. 839-845 ◽  
Author(s):  
O. Yu. Sorokin ◽  
M. L. Vaganova ◽  
S. S. Solntsev ◽  
I. V. Osin

Sign in / Sign up

Export Citation Format

Share Document