On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations

2006 ◽  
Vol 22 (6-7) ◽  
pp. 897-903 ◽  
Author(s):  
F.J. Huera Huarte ◽  
P.W. Bearman ◽  
J.R. Chaplin
Author(s):  
S. Bourdier ◽  
J. R. Chaplin

The dynamics of vortex-induced vibrations of a rigid circular cylinder with structural non-linearities, introduced by means of discontinuities in the support system, are studied experimentally. The analysis of the measurements is carried out using non-linear vibration tools, i.e phase-flow portraits, frequency spectra, Lyapunov exponents and correlation dimensions, to provide an insight into the dynamical changes in the system brought about by restricting the motion. We show that chaotic motions can occur due to the structural non-linearities.


1993 ◽  
Vol 250 ◽  
pp. 481-508 ◽  
Author(s):  
D. Brika ◽  
A. Laneville

In an experimental study of the vortex-induced oscillations of a long flexible circular cylinder, the observed stationary amplitudes describe an hysteresis loop partially different from earlier studies. Each branch of the loop is associated with a vortex shedding mode and, as a jump from one branch to the other occurs, the phase difference between the cylinder displacement and the vortex shedding undergoes an abrupt change. The critical flow velocities at which the jump occurs concur with the flow visualization observations of Williamson & Roshko (1988) on the vortex shedding modes near the fundamental synchronization region. Impulsive regimes, obtained at a given flow velocity with the cylinder initially at rest or pre-excited, and progressive regimes resulting from a variation of the flow velocity, are examined. The occurrence of bifurcations is detected for a flow velocity range in the case of the impulsive regimes. The coordinates of the bifurcations define a boundary between two vortex shedding modes, a boundary that verifies the critical curve obtained by Williamson & Roshko (1988). The experimental set-up of this study simulates half the wavelength of a vibrating cable, eliminates the end effects present in oscillating rigid cylinder set-up and has one of the lowest damping ratios reported for the study of this phenomenon.


2021 ◽  
Author(s):  
Pierre-Adrien Opinel ◽  
Narakorn Srinil

Abstract This paper presents the experimental investigation of vortex-induced vibrations (VIV) of a flexibly mounted circular cylinder in combined current and wave flows. The same experimental setup has previously been used in our previous study (OMAE2020-18161) on VIV in regular waves. The system comprises a pendulum-type vertical cylinder mounted on two-dimensional springs with equal stiffness in in-line and cross-flow directions. The mass ratio of the system is close to 3, the aspect ratio of the tested cylinder based on its submerged length is close to 27, and the damping in still water is around 3.4%. Three current velocities are considered in this study, namely 0.21 m/s, 0.29 m/s and 0.37 m/s, in combination with the generated regular waves. The cylinder motion is recorded using targets and two Qualisys cameras, and the water elevation is measured utilizing a wave probe. The covered ranges of Keulegan-Carpenter number KC are [9.6–35.4], [12.8–40.9] and [16.3–47.8], and the corresponding ranges of reduced velocity Vr are [8–16.3], [10.6–18.4] and [14–20.5] for the cases with current velocity of 0.21 m/s, 0.29 m/s and 0.37 m/s, respectively. The cylinder response amplitudes, trajectories and vibration frequencies are extracted from the recorded motion signals. In all cases the cylinder oscillates primarily at the flow frequency in the in-line direction, and the in-line VIV component additionally appears for the intermediate (0.29 m/s) and high (0.37 m/s) current velocities. The cross-flow oscillation frequency is principally at two or three times the flow frequency in the low current case, similar to what is observed in pure regular waves. For higher current velocities, the cross-flow frequency tends to lock-in with the system natural frequency, as in the steady flow case. The inline and cross-flow cylinder response amplitudes of the combined current and regular wave flow cases are eventually compared with the amplitudes from the pure current and pure regular wave flow cases.


1999 ◽  
Vol 13 (2) ◽  
pp. 165-189 ◽  
Author(s):  
C.Y. ZHOU ◽  
R.M.C. SO ◽  
K. LAM

Sign in / Sign up

Export Citation Format

Share Document