scholarly journals A semi-implicit coupling technique for fluid–structure interaction problems with strong added-mass effect

2018 ◽  
Vol 80 ◽  
pp. 94-112 ◽  
Author(s):  
Alireza Naseri ◽  
Oriol Lehmkuhl ◽  
Ignacio Gonzalez ◽  
Eduard Bartrons ◽  
Carlos David Pérez-Segarra ◽  
...  
Author(s):  
Yohei Magara ◽  
Mitsuhiro Narita ◽  
Kazuyuki Yamaguchi ◽  
Naohiko Takahashi ◽  
Tetsuya Kuwano

Characteristics of natural frequencies of an impeller and an equivalent disc were investigated in high-density gas to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications. The equivalent disc had outer and inner diameters equal to those of the impeller. We expected that natural frequencies would decrease with increasing the gas density because of the added-mass effect. However, we found experimentally that some natural frequencies of the impeller and the disc in high-density gas decreased but others increased. Moreover, we observed, under high-density condition, some resonance frequencies that we did not observe under low-density condition. These experimental results cannot be explained by only the added-mass effect. For simplicity, we focused on the disc to understand the mechanism of the behavior of natural frequencies. We developed a theoretical analysis of fluid-structure interaction considering not only the mass but also stiffness of gas. The analysis gave a qualitative explanation of the experimental results. In addition, we carried out a fluid-structure interaction analysis using the finite element method. The behavior of natural frequencies of the disc in high-density gas was predicted with errors less than 6%.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Aik Ying Tang ◽  
Norsarahaida Amin

Some numerical approaches to solve fluid structure interaction problems in blood flow are reviewed. Fluid structure interaction is the interaction between a deformable structure with either an internal or external flow. A discussion on why the compliant artery associated with fluid structure interaction should be taken into consideration in favor of the rigid wall model being included. However, only the Newtonian model of blood is assumed, while various structure models which include, amongst others, generalized string models and linearly viscoelastic Koiter shell model that give a more realistic representation of the vessel walls compared to the rigid structure are presented. Since there exists a strong added mass effect due to the comparable densities of blood and the vessel wall, the numerical approaches to overcome the added mass effect are discussed according to the partitioned and monolithic classifications, where the deficiencies of each approach are highlighted. Improved numerical methods which are more stable and offer less computational cost such as the semi-implicit, kinematic splitting, and the geometrical multiscale approach are summarized, and, finally, an appropriate structure and numerical scheme to tackle fluid structure interaction problems are proposed.


2007 ◽  
Vol 17 (06) ◽  
pp. 957-983 ◽  
Author(s):  
A. QUAINI ◽  
A. QUARTERONI

We address the numerical simulation of fluid-structure interaction problems characterized by a strong added-mass effect. We propose a semi-implicit coupling scheme based on an algebraic fractional-step method. The basic idea of a semi-implicit scheme consists in coupling implicitly the added-mass effect, while the other terms (dissipation, convection and geometrical nonlinearities) are treated explicitly. Thanks to this kind of explicit–implicit splitting, computational costs can be reduced (in comparison to fully implicit coupling algorithms) and the scheme remains stable for a wide range of discretization parameters. In this paper we derive this kind of splitting from the algebraic formulation of the coupled fluid-structure problem (after finite-element space discretization). From our knowledge, it is the first time that algebraic fractional step methods, used thus far only for fluid problems in computational domains with rigid boundaries, are applied to fluid-structure problems. In particular, for the specific semi-implicit method presented in this work, we adapt the Yosida scheme to the case of a coupled fluid-structure problem. This scheme relies on an approximate LU block factorization of the matrix obtained after the discretization in time and space of the fluid-structure system. We analyze the numerical performances of this scheme on 2D fluid-structure simulations performed with a simple 1D structure model.


2009 ◽  
Vol 80 (10) ◽  
pp. 1261-1294 ◽  
Author(s):  
S. R. Idelsohn ◽  
F. Del Pin ◽  
R. Rossi ◽  
E. Oñate

Author(s):  
Seungho Lim ◽  
Kyungrok Ha ◽  
Kyoung-Su Park ◽  
No-Cheol Park ◽  
Young-Pil Park ◽  
...  

The System-integrated Modular Advanced ReacTor (SMART) is a small modular integral-type reactor for the seawater desalination and small-scaled power generation under development in Korea. Although the SMART is innovative reactor with a sensible mixture of the proven technology and advanced design features aimed at enhanced safety, there is no valid prototype which can specify the structural dynamic characteristics of reactor internals. Thus, extensive research for the technology verification and standard design approval are in progress. One of them is to perform the dynamic characteristics identification of reactor internals. Especially, it is focused on the added mass effect caused by the fluid-structure interaction because the reactor internals is submerged in the reactor coolant. The extracted dynamic characteristics such as the natural frequencies and the vibratory mode shapes can be used as the basis on further dynamic analysis, for example, seismic analysis and a postulated pipe break analysis.


2006 ◽  
Vol 129 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Jean-François Sigrist ◽  
Daniel Broc ◽  
Christian Lainé

The present paper deals with the modal analysis of a nuclear reactor with fluid-structure interaction effects. The proposed study aims at describing various fluid-structure interaction effects using several numerical approaches. The modeling lies on a classical finite element discretization of the coupled fluid-structure equation, enabling the description of added mass and added stiffness effects. A specific procedure is developed in order to model the presence of internal structures within the nuclear reactor, based on periodical homogenization techniques. The numerical model of the nuclear pressure vessel is developed in a finite element code in which the homogenization method is implemented. The proposed methodology enables a convenient analysis from the engineering point of view and gives an example of the fluid-structure interaction effects, which are expected on an industrial structure. The modal analysis of the nuclear pressure vessel is then performed and highlights of the relative importance of FSI effects for the industrial case are evaluated: the analysis shows that added mass effects and confinement effects are of paramount importance in comparison to added stiffness effects.


2020 ◽  
Vol 25 (1) ◽  
pp. 9
Author(s):  
Nikolay Banichuk ◽  
Svetlana Ivanova ◽  
Evgeny Makeev ◽  
Juha Jeronen ◽  
Tero Tuovinen

The paper considers the analysis of a traveling panel, submerged in axially flowing fluid. In order to accurately model the dynamics and stability of a lightweight moving material, the interaction between the material and the surrounding air must be taken into account. The lightweight material leads to the inertial contribution of the surrounding air to the acceleration of the panel becoming significant. This formulation is novel and the case complements our previous studies on the field. The approach described in this paper allows for an efficient semi-analytical solution, where the reaction pressure of the fluid flow is analytically represented by an added-mass model in terms of the panel displacement. Then, the panel displacement, accounting also for the fluid–structure interaction, is analyzed with the help of the weak form of the governing partial differential equation, using a Galerkin method. In the first part of this paper, we represent the traveling panel by a single partial differential equation in weak form, using an added-mass approximation of the exact fluid reaction. In the second part, we apply a Galerkin method for dynamic stability analysis of the panel, and present an analytical investigation of static stability loss (divergence, buckling) based on the added-mass model.


Sign in / Sign up

Export Citation Format

Share Document