scholarly journals A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD

2007 ◽  
Vol 17 (06) ◽  
pp. 957-983 ◽  
Author(s):  
A. QUAINI ◽  
A. QUARTERONI

We address the numerical simulation of fluid-structure interaction problems characterized by a strong added-mass effect. We propose a semi-implicit coupling scheme based on an algebraic fractional-step method. The basic idea of a semi-implicit scheme consists in coupling implicitly the added-mass effect, while the other terms (dissipation, convection and geometrical nonlinearities) are treated explicitly. Thanks to this kind of explicit–implicit splitting, computational costs can be reduced (in comparison to fully implicit coupling algorithms) and the scheme remains stable for a wide range of discretization parameters. In this paper we derive this kind of splitting from the algebraic formulation of the coupled fluid-structure problem (after finite-element space discretization). From our knowledge, it is the first time that algebraic fractional step methods, used thus far only for fluid problems in computational domains with rigid boundaries, are applied to fluid-structure problems. In particular, for the specific semi-implicit method presented in this work, we adapt the Yosida scheme to the case of a coupled fluid-structure problem. This scheme relies on an approximate LU block factorization of the matrix obtained after the discretization in time and space of the fluid-structure system. We analyze the numerical performances of this scheme on 2D fluid-structure simulations performed with a simple 1D structure model.

Author(s):  
Yohei Magara ◽  
Mitsuhiro Narita ◽  
Kazuyuki Yamaguchi ◽  
Naohiko Takahashi ◽  
Tetsuya Kuwano

Characteristics of natural frequencies of an impeller and an equivalent disc were investigated in high-density gas to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications. The equivalent disc had outer and inner diameters equal to those of the impeller. We expected that natural frequencies would decrease with increasing the gas density because of the added-mass effect. However, we found experimentally that some natural frequencies of the impeller and the disc in high-density gas decreased but others increased. Moreover, we observed, under high-density condition, some resonance frequencies that we did not observe under low-density condition. These experimental results cannot be explained by only the added-mass effect. For simplicity, we focused on the disc to understand the mechanism of the behavior of natural frequencies. We developed a theoretical analysis of fluid-structure interaction considering not only the mass but also stiffness of gas. The analysis gave a qualitative explanation of the experimental results. In addition, we carried out a fluid-structure interaction analysis using the finite element method. The behavior of natural frequencies of the disc in high-density gas was predicted with errors less than 6%.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Aik Ying Tang ◽  
Norsarahaida Amin

Some numerical approaches to solve fluid structure interaction problems in blood flow are reviewed. Fluid structure interaction is the interaction between a deformable structure with either an internal or external flow. A discussion on why the compliant artery associated with fluid structure interaction should be taken into consideration in favor of the rigid wall model being included. However, only the Newtonian model of blood is assumed, while various structure models which include, amongst others, generalized string models and linearly viscoelastic Koiter shell model that give a more realistic representation of the vessel walls compared to the rigid structure are presented. Since there exists a strong added mass effect due to the comparable densities of blood and the vessel wall, the numerical approaches to overcome the added mass effect are discussed according to the partitioned and monolithic classifications, where the deficiencies of each approach are highlighted. Improved numerical methods which are more stable and offer less computational cost such as the semi-implicit, kinematic splitting, and the geometrical multiscale approach are summarized, and, finally, an appropriate structure and numerical scheme to tackle fluid structure interaction problems are proposed.


2018 ◽  
Vol 80 ◽  
pp. 94-112 ◽  
Author(s):  
Alireza Naseri ◽  
Oriol Lehmkuhl ◽  
Ignacio Gonzalez ◽  
Eduard Bartrons ◽  
Carlos David Pérez-Segarra ◽  
...  

2009 ◽  
Vol 80 (10) ◽  
pp. 1261-1294 ◽  
Author(s):  
S. R. Idelsohn ◽  
F. Del Pin ◽  
R. Rossi ◽  
E. Oñate

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract The gas-liquid cylindrical cyclone (GLCC©, The University of Tulsa, 1994) is a simple, compact, and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. An in-depth evaluation of specific design modifications and their effect on safety and structural robustness are carried out in this study using finite element analysis (FEA). Fluid–structure interaction (FSI) analysis is also carried out using the results of computational fluid dynamics (CFD) aimed at investigating the effect of fluid flow on the inlet section structural integrity. The selected design modifications are based on feasibility of GLCC© manufacturing and assembly for field applications. Different case studies incorporating sustained GLCC© internal pressure, dead weight loading, forces generated because of slug flow and high temperatures are analyzed and presented in this paper. The concept of holes cut out in baffle has been effective with no stresses or deformation in the baffle area. FSI simulation of slug flow has proved that FEA direct loading case studies are far more conservative.


Author(s):  
Q. Li ◽  
H. Z. Liu ◽  
Z. Zhuang ◽  
S. Yamaguchi ◽  
M. Toyoda

A partitioned coupling algorithm is presented in this paper to solve the dynamic large-displacement fluid-structure interaction (DFSI) problems. In this algorithm, the program based on arbitrary Lagrangian Eulerian (ALE) and fractional two-step method is developed to calculate computational fluid dynamics (CFD) and computational mesh dynamics (CMD). ABAQUS is used to calculate computational structure dynamics (CSD). Some user subroutines are implemented into ABAQUS and the data are exchanged among CSD, CFD and CMD. Numerical results including elephant foot bulging (EFB) of the liquid storage tank are obtained under dynamic waveform.


Sign in / Sign up

Export Citation Format

Share Document