Stability, bifurcation prediction and optimal control of a delayed integer-order small-world network based on the fractional-order PD control policy of variable order

2020 ◽  
Vol 357 (15) ◽  
pp. 10288-10311
Author(s):  
Binbin Tao ◽  
Min Xiao ◽  
Guoping Jiang ◽  
Jinde Cao
2019 ◽  
Vol 63 (1) ◽  
Author(s):  
Huaifei Wang ◽  
Min Xiao ◽  
Binbin Tao ◽  
Fengyu Xu ◽  
Zhengxin Wang ◽  
...  

2021 ◽  
Vol 5 (4) ◽  
pp. 261
Author(s):  
Silvério Rosa ◽  
Delfim F. M. Torres

A Caputo-type fractional-order mathematical model for “metapopulation cholera transmission” was recently proposed in [Chaos Solitons Fractals 117 (2018), 37–49]. A sensitivity analysis of that model is done here to show the accuracy relevance of parameter estimation. Then, a fractional optimal control (FOC) problem is formulated and numerically solved. A cost-effectiveness analysis is performed to assess the relevance of studied control measures. Moreover, such analysis allows us to assess the cost and effectiveness of the control measures during intervention. We conclude that the FOC system is more effective only in part of the time interval. For this reason, we propose a system where the derivative order varies along the time interval, being fractional or classical when more advantageous. Such variable-order fractional model, that we call a FractInt system, shows to be the most effective in the control of the disease.


Author(s):  
Sina Dehghan ◽  
Tiebiao Zhao ◽  
YangQuan Chen ◽  
Taymaz Homayouni

Abstract RIOTS is a Matlab toolbox capable of solving a very general form of integer order optimal control problems. In this paper, we present an approach for implementing Model Predictive Control (MPC) to control a general form of fractional order systems using RIOTS toolbox. This approach is based on time-response-invariant approximation of fractional order system with an integer order model to be used as the internal model in MPC. The implementation of this approach is demonstrated to control a coupled MIMO commensurate fractional order model. Moreover, the performance and its application process is compared to examples reported in the literature.


2017 ◽  
Vol 354 (17) ◽  
pp. 7643-7667 ◽  
Author(s):  
Min Xiao ◽  
Wei Xing Zheng ◽  
Jinxing Lin ◽  
Guoping Jiang ◽  
Lindu Zhao ◽  
...  

2014 ◽  
Vol 28 (27) ◽  
pp. 1450211 ◽  
Author(s):  
Hao Zhang ◽  
Di-Yi Chen ◽  
Bei-Bei Xu ◽  
Run-Fan Zhang

This paper is a step forward to generalize the fundamentals of the conventional controllability in fractional-order complex networks. First, we discuss the existence of controllability theory of fractional-order complex networks. Furthermore, we propose stringent mathematical expression and controllable proof of fractional complex networks. Finally, three typical examples from the simplest network, the chain fractional-order network, to the Small-World network are presented to validate the correctness of the above theorem.


2021 ◽  
pp. 107754632110310
Author(s):  
Ahmed S Hendy ◽  
Mahmoud A Zaky ◽  
José A Tenreiro Machado

The treatment of fractional differential equations and fractional optimal control problems is more difficult to tackle than the standard integer-order counterpart and may pose problems to non-specialists. Due to this reason, the analytical and numerical methods proposed in the literature may be applied incorrectly. Often, such methods were established for the classical integer-order operators and are then applied directly without having in mind the restrictions posed by their fractional-order versions. It was recently reported that the Cole–Hopf transformation can be used to convert the time-fractional nonlinear Burgers’ equation into the time-fractional linear heat equation. In this article, we show that, unlike integer-order differential equations, employing the Cole–Hopf transformation for reducing the nonlinear time-fractional Burgers’ equation into the time-fractional heat equation is wrong from two different perspectives. Indeed, such a reduction is accomplished using incorrect transcripts of the Leibniz or chain rules. Hence, providing numerical or analytical schemes based on the Cole–Hopf transformation leads to erroneous results for the nonlinear time-fractional Burgers’ equation. Regarding constant-order, variable-order, and distributed-order Caputo fractional optimal problems, we note an inconsistency in the necessary optimality conditions derived in the literature. The transversality conditions were introduced as identical to those for the integer-order case, with a vanishing multiplier at the terminal of the interval. The correct condition should involve a constant-order, variable-order, or distributed-order fractional integral operator. We also deduce that if the control system is defined with a Caputo derivative, then the adjoint equations should be expressed in the Riemann–Liouville sense and vice versa. In fact, neglecting some terms in the integration by parts formulae, during the derivation of the optimality conditions, causes some confusion in the literature.


Sign in / Sign up

Export Citation Format

Share Document