Improved Krill Herd Algorithm based Sliding Mode MPPT Controller for Variable Step Size P&O method in PV system under Simultaneous Change of Irradiance and Temperature

Author(s):  
Van-Quang-Binh Ngo ◽  
Mohsen Latifi ◽  
Rabeh Abbassi ◽  
Houssem Jerbi ◽  
Kentaro Ohshima ◽  
...  
Solar Energy ◽  
2014 ◽  
Vol 102 ◽  
pp. 247-256 ◽  
Author(s):  
Yie-Tone Chen ◽  
Zhi-Hao Lai ◽  
Ruey-Hsun Liang

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4153 ◽  
Author(s):  
Adeel Feroz Mirza ◽  
Majad Mansoor ◽  
Qiang Ling ◽  
Muhammad Imran Khan ◽  
Omar M. Aldossary

In this article, a novel maximum power point tracking (MPPT) controller for the fast-changing irradiance of photovoltaic (PV) systems is introduced. Our technique utilizes a modified incremental conductance (IC) algorithm for the efficient and fast tracking of MPP. The proposed system has a simple implementation, fast tracking, and achieved steady-state oscillation. Traditional MPPT techniques use a tradeoff between steady-state and transition-state parameters. The shortfalls of various techniques are studied. A comprehensive comparative study is done to test various existing techniques against the proposed technique. The common parameters discussed in this study are fast convergence, efficiency, and reduced oscillations. The proposed method successfully addresses these issues and improves the results significantly by using a proportional integral deferential (PID) controller with a genetic algorithm (GA) to predict the variable step size of the IC-based MPPT technique. The system is designed and tested against the perturbation and observation (P&O)-based MPPT technique. Our technique effectively detects global maxima (GM) for fast-changing irradiance due to the adopted GA-based tuning of the controller. A comparative analysis of the results proves the superior performance and capabilities to track GM in fewer iterations.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4668 ◽  
Author(s):  
Maissa Farhat ◽  
Oscar Barambones ◽  
Lassaâd Sbita

This paper presents a complete study of a standalone photovoltaic (PV) system including a maximum power tracker (MPPT) driving a DC boost converter to feed a resistive load. Here, a new MPPT approach using a modification on the original perturb and observe (P&O) algorithm is proposed; the improved algorithm is founded on a variable step size (VSZ). This novel algorithm is realized and efficiently implemented in the PV system. The proposed VSZ algorithm is compared both in simulation and in real time to the P&O algorithm. The stability analysis for the VSZ algorithm is performed using Lyapunov’s stability theory. In this paper, a detailed study and explanation of the modified P&O MPPT controller is presented to ensure high PV system performance. The proposed algorithm is practically implemented using a DSP1104 for real-time testing. Significant results are achieved, proving the validity of the proposed PV system control scheme. The obtained results show that the proposed VSZ succeeds at harvesting the maximum power point (MPP), as the amount of harvested power using VSZ is three times greater than the power extracted without the tracking algorithm. The VSZ reveals improved performance compared to the conventional P&O algorithm in term of dynamic response, signal quality and stability.


2019 ◽  
Vol 16 (2) ◽  
pp. 740-744
Author(s):  
R. Geethamani ◽  
C. Pavithra ◽  
B. Niranjana ◽  
V. Gomathy ◽  
P. Chitra

A Variable step size Incremental resistance algorithm for PV system was designed for maximum power point tracking. The outputs are generated with help of MATLAB/SIMLUNK. The performance of the PV system for partial shading condition was observed. The output for the system was found to be more efficient and attains stability much faster than any other controller. The power output can be controlled by varying the scaling factor.


2018 ◽  
Vol 2 (2) ◽  
pp. 86 ◽  
Author(s):  
Hamza Bahri ◽  
Abdelghani Harrag

In this paper, a variable step size P&O algorithm is used in order to improve the performance of a photovoltaic system in both dynamic and static plans. The efficiency of the proposed algorithm has been investigated successfully using the BP SX150S solar module connected to the DC-DC derived by a P&O MPPT algorithm. The comparative study results of both conventional fixed step size and the proposed variable step size P&O algorithms prove the effectiveness of the proposed algorithm compared to the standard fixed step size PO MPPT. The proposed algorithm reduces response time between 13.86% and 45.28% and the steady state oscillation between 83.33% and 100% leading to less power loss especially in case of fast changing atmospheric conditions.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sign in / Sign up

Export Citation Format

Share Document