scholarly journals A Real-Time Implementation of Novel and Stable Variable Step Size MPPT

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4668 ◽  
Author(s):  
Maissa Farhat ◽  
Oscar Barambones ◽  
Lassaâd Sbita

This paper presents a complete study of a standalone photovoltaic (PV) system including a maximum power tracker (MPPT) driving a DC boost converter to feed a resistive load. Here, a new MPPT approach using a modification on the original perturb and observe (P&O) algorithm is proposed; the improved algorithm is founded on a variable step size (VSZ). This novel algorithm is realized and efficiently implemented in the PV system. The proposed VSZ algorithm is compared both in simulation and in real time to the P&O algorithm. The stability analysis for the VSZ algorithm is performed using Lyapunov’s stability theory. In this paper, a detailed study and explanation of the modified P&O MPPT controller is presented to ensure high PV system performance. The proposed algorithm is practically implemented using a DSP1104 for real-time testing. Significant results are achieved, proving the validity of the proposed PV system control scheme. The obtained results show that the proposed VSZ succeeds at harvesting the maximum power point (MPP), as the amount of harvested power using VSZ is three times greater than the power extracted without the tracking algorithm. The VSZ reveals improved performance compared to the conventional P&O algorithm in term of dynamic response, signal quality and stability.

2011 ◽  
Vol 347-353 ◽  
pp. 1044-1048
Author(s):  
Yun Yun Chen ◽  
Jun Ji Wu ◽  
Zhan Feng Ying

Considering the fact that when the cell temperature and solar insolation change rapidly, traditional variable step size(VSS) perturbation and observation(P&O) methods exist the defects that their tracking speed is relatively slow, there is small power oscillation around MPP(Maximum Power Point) and even some of them exist the situation of tracking unsuccessfully. This paper proposes a MPPT(Maximum Power Point Tracing) technology based on adaptive area algorithm. The simulation model of PV system is established by MATLAB. The simulation results show that the proposed method can track the MPP fast and accurately, and ensure the steady state characteristics of PV systems even when the climate conditions change rapidly. It effectively overcomes the defects of traditional variable step size perturbation and observation methods.


2020 ◽  
Vol 12 (14) ◽  
pp. 5601 ◽  
Author(s):  
Hegazy Rezk ◽  
Ahmed Fathy

The output power of a fuel cell mainly depends on the operating conditions such as cell temperature and membrane water content. The fuel cell (FC) power versus FC current graph has a unique maximum power point (MPP). The location of the MPP is variable, depending on the operating condition. Consequently, a maximum power point tracker (MPPT) is highly required to ensure that the fuel cell operates at an MPP to increase its performance. In this research work, a variable step-size incremental resistance (VSS-INR) tracking method was suggested to track the MPP of the proton exchange membrane (PEMFC). Most of MPPT methods used with PEMFC require at least three sensors: temperature sensor, water content sensor, and voltage sensor. However, the proposed VSS-INR needs only two sensors: voltage and current sensors. The step size of the VSS-INR is directly proportional to the error signal. Therefore, the step size will become small as the error becomes very small nearby the maximum power point. Accordingly, the accuracy of the VSS-INR tracking method is high in a steady state. To test and validate the VSS-INR, nine different scenarios of operating conditions, including normal operation, only temperature variation, only variation of water content in the membrane, and both variations of temperature and water content simultaneously, were used. The obtained results were compared with previously proposed methods, including particle swarm optimization (PSO), perturb and observe (P&O), and sliding mode (SM), under different operating conditions. The results of the comparison confirmed the superiority of VSS-INR compared with other methods in terms of the tracking efficiency and steady-state fluctuations.


2019 ◽  
Vol 16 (2) ◽  
pp. 740-744
Author(s):  
R. Geethamani ◽  
C. Pavithra ◽  
B. Niranjana ◽  
V. Gomathy ◽  
P. Chitra

A Variable step size Incremental resistance algorithm for PV system was designed for maximum power point tracking. The outputs are generated with help of MATLAB/SIMLUNK. The performance of the PV system for partial shading condition was observed. The output for the system was found to be more efficient and attains stability much faster than any other controller. The power output can be controlled by varying the scaling factor.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2331
Author(s):  
Isaac Owusu-Nyarko ◽  
Mohamed A. Elgenedy ◽  
Ibrahim Abdelsalam ◽  
Khaled H. Ahmed

A highly efficient photovoltaic (PV) system requires a maximum power point tracker to extract peak power from PV modules. The conventional variable step-size incremental conductance (INC) maximum power point tracking (MPPT) technique has two main drawbacks. First, it uses a pre-set scaling factor, which requires manual tuning under different irradiance levels. Second, it adapts the slope of the PV characteristics curve to vary the step-size, which means any small changes in PV module voltage will significantly increase the overall step-size. Subsequently, it deviates the operating point away from the actual reference. In this paper, a new modified variable step-size INC algorithm is proposed to address the aforementioned problems. The proposed algorithm consists of two parts, namely autonomous scaling factor and slope angle variation algorithm. The autonomous scaling factor continuously adjusts the step-size without using a pre-set constant to control the trade-off between convergence speed and tracking precision. The slope angle variation algorithm mitigates the impact of PV voltage change, especially during variable irradiance conditions to improve the MPPT efficiency. The theoretical investigations of the new technique are carried out while its practicability is confirmed by simulation and experimental results.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 244
Author(s):  
Lieping Zhang ◽  
Zhengzhong Wang ◽  
Peng Cao ◽  
Shenglan Zhang

A photovoltaic power supply with a simple structure and high tracking efficiency is needed in self-powered, wireless sensor networks. First, a maximum power point tracking (MPPT) algorithm, including the load current maximization-perturbation and observation (LCM-P&O) methods, with a fixed step size, is proposed by integrating the traditional load current maximization (LCM) method and perturbation and observation (P&O) method. By sampling the changes of load current and photovoltaic cell input current once the disturbance is applied, the pulse width modulation (PWM) regulation mode, i.e., increasing or reducing, can be determined in the next process. Then, the above algorithm is improved by using the variable step size strategy. By comparing the difference between the absolute value of the observed current value and the theoretical current value at the maximum power point of the photovoltaic cell with the set threshold value, the variable step size for perturbation is determined. MATLAB simulation results show that the LCM-P&O method, with a variable step size, has faster convergence speed and higher tracking accuracy. Finally, the two MPPT algorithms are tested and analyzed under constant voltage source input and indoor fluorescent lamp illumination through an actual circuit, respectively. The experimental results show that the LCM-P&O method with variable step size has a higher tracking efficiency, about 90%–92%, and has higher stability and lower power consumption.


Author(s):  
Hassan Abouobaida ◽  
Said El Bied

This paper is dedicated to studying the control of the three level Boost converters (TLBC) and the optimization method of maximum power point tracking (MPPT) based a variable step. The main objective of the optimization is to find a compromise between the response time and the amplitude of the oscillations around the optimal point. The nonlinear behavior of the (TLBC) is manifested by the presence of the disturbances. For reasons of simplicity of the control, a linearization based on the dynamic compensation of the disturbance is proposed. On the one hand, a cascaded MPPT algorithm and a simple linear regulator allow adjusting the inductance current and a maximum power operation of the wind system. On the other hand, a second linear regulator ensures balancing of the output voltages. The paper proposes a new approach to the optimization of the Inc-Cond MPPT. The suggested contribution consists of using an exponential function of the power derivative to develop a variable step. The adoption of the variable step size according to the dynamics of the wind system implies a compromise between the response time and the amplitude of the ripples around the optimal point. The simulation results showed that a variable step size, especially in transient conditions and during a very rapid climate change recover the optimum power point within a reasonable time and suitable amplitude of the oscillations. The results achieved in this study show the ability of the proposed approach to extract the maximum power according to the available wind speed while guaranteeing a better efficiency.  The developed study is summarized by the following points: (a) modeling the wind conversion systems, (b) detailing the control approach of the (TLBC) and presenting the variable step method (c) presenting the simulations results and evaluating the perf


Author(s):  
Mustapha Elyaqouti ◽  
Safa Hakim ◽  
Sadik Farhat ◽  
Lahoussine Bouhouch ◽  
Ahmed Ihlal

In order to maximize the electric energy production of a photovoltaic generator (PVG), the maximum power point tracking (MPPT) methods are usually used in photovoltaic systems. The principle of these techniques is to operate the PVG to the maximum power point (MPP), which depends on the environmental factors, such as solar irradiance and ambient temperature, ensuring the optimal power transfer between PVG and load. In this paper, we present the implementation of two digital MPPT commands using the Arduino Mega type. The two proposed MPPT controls are based on the algorithm of perturb and observe (P&O), the first one with fixed perturbation step and the second one with two perturbations step varying with some conditions. The experimental results show that the P&O algorithm with variable step perturbation gives good results compared to the P&O algorithm with fixed perturbation step in terms of the time response and the oscillations around the MPP.


Author(s):  
Jae-Hoon Cho ◽  
◽  
Jin-Il Park ◽  
Won-Pyo Hong ◽  
Myung-Geun Chun ◽  
...  

This paper presents a variable step size incrementalconductance direct Maximum Power Point Tracking (MPPT) method using fuzzy membership for a standalone photovoltaic (PV) system under rapidly changing irradiation. MPPT techniques have been widely applied in PV systems to make a PV array generate maximum power, which depends on solar irradiation. In most applications of MPPT technologies, MPPT algorithm design methods are performed and tested under slowly changing atmospheric conditions such as irradiation and temperature. The short-term effect under rapidly changing irradiation should be considered, however, to improve the dynamic performance of PV system. Our proposed MPPT method is based on an incremental conductance algorithm with a direct control scheme that can directly adjust the duty cycle for the PI controller. A fuzzy membership function is adopted to determine the variable step size according to rapidly changing irradiation. The proposed methods thus has not only faster dynamic performance but also high tracking accuracy. In order to show the effect of the proposed method, the simulation model and proposed MPPT is designed with MATLAB/Simpower and simulated with MATLAB/Stateflow.


Sign in / Sign up

Export Citation Format

Share Document