Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

2007 ◽  
Vol 140 (1-2) ◽  
pp. 264-270 ◽  
Author(s):  
Samia Azabou ◽  
Tahar Mechichi ◽  
Bharat K.C. Patel ◽  
Sami Sayadi
1996 ◽  
Vol 62 (4) ◽  
pp. 1188-1196 ◽  
Author(s):  
H R Beller ◽  
A M Spormann ◽  
P K Sharma ◽  
J R Cole ◽  
M Reinhard

2013 ◽  
Vol 825 ◽  
pp. 406-409
Author(s):  
Akemi Matsubara ◽  
Jasmin E. Hurtado

Mining industry is a source of wealth but also of environmental pollution in Peru. In this study 12 colonies of actinomycetes were isolated in acidic cultures from mineral ores and concentrates from mines of the Peruvian highlands. The isolates were characterized phenotypically by microscopy and growth at different conditions as pH tolerance, temperature, and sodium chloride, heavy metals resistance; ferrous iron and thiosulfate oxidation. All isolates were identified as actinomycetes based on their cultural and spore characteristics. Most of the isolates were able to grow at 8 - 45°C and pH 4 - 11. 60% of isolates grew at 10% NaCl but none of them growth at 13%. Iron oxidation was shown by 60% of isolates at pH 4, but only 25% were able to oxidize iron at pH 2. Thiosulfate oxidation was not detected in any isolate. Most of the isolates showed capacity to grow in medium with 200 ppm of Pb, Fe, Zn and 100 ppm of Cu. All of the physiological characteristics found in this work indicate the potential of these isolates as source for bioremediation and bioleaching.


2012 ◽  
Vol 58 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Xiao-bing Jing ◽  
Nan He ◽  
Ying Zhang ◽  
Yan-ru Cao ◽  
Heng Xu

The enhanced effect of heavy-metal-mobilizing bacteria on the uptake of Pb, Cu, and Cd by Coprinus comatus from Pb-, Cu-, and Cd-multicontaminated soil was assessed in this study. Thirteen strains, tolerating 800 mg·L–1 Pb, 200 mg·L–1 Cu, and 200 mg·L–1 Cd simultaneously were selected for heavy-metal-solubilizing experiments in soil. The mobilization of heavy metals depended on the characteristics of bacteria and heavy metals. Correlation analysis demonstrated that for Pb solubilization, the acid-producing ability was the most significant factor, while for Cu and Cd, siderophores played a leading role in this process. Four strains, based on their excellent ability to solubilize heavy metal in soil, were applied in pot experiments. The results showed that all strains can promote the growth of C. comatus and meanwhile help mushroom accumulate more heavy metals (Pb, Cd, and Cu). The maximum uptake for total Pb and Cu by C. comatus was observed in inoculations with Bacillus sp. strain JSG1 (2.02- and 2.13-fold, respectively, compared with uninoculated soil), while for Cd, it was recorded in Bacillus sp. strain PB2 treated soil (2.03-fold). Therefore, this work suggests that the mushroom–bacteria interaction can be developed into a novel bioremediation strategy.


Sign in / Sign up

Export Citation Format

Share Document