The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells

2015 ◽  
Vol 283 ◽  
pp. 211-217 ◽  
Author(s):  
Oluwaseun Adelaja ◽  
Tajalli Keshavarz ◽  
Godfrey Kyazze
2013 ◽  
Vol 38 (35) ◽  
pp. 15598-15605 ◽  
Author(s):  
Bor-Yann Chen ◽  
Chung-Chuan Hsueh ◽  
Shi-Qi Liu ◽  
Jhao Yin Hung ◽  
Yan Qiao ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3455 ◽  
Author(s):  
Priyadharshini Mani ◽  
Vallam Thodi Fidal Kumar ◽  
Taj Keshavarz ◽  
T Sainathan Chandra ◽  
Godfrey Kyazze

Redox mediators could be used to improve the efficiency of microbial fuel cells (MFCs) by enhancing electron transfer rates and decreasing charge transfer resistance at electrodes. However, many artificial redox mediators are expensive and/or toxic. In this study, laccase enzyme was employed as a biocathode of MFCs in the presence of two natural redox mediators (syringaldehyde (Syr) and acetosyringone (As)), and for comparison, a commonly-used artificial mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was used to investigate their influence on azo dye decolorization and power production. The redox properties of the mediator-laccase systems were studied by cyclic voltammetry. The presence of ABTS and As increased power density from 54.7 ± 3.5 mW m−2 (control) to 77.2 ± 4.2 mW m−2 and 62.5 ± 3.7 mW m−2 respectively. The power decreased to 23.2 ± 2.1 mW m−2 for laccase with Syr. The cathodic decolorization of Acid orange 7 (AO7) by laccase indicated a 12–16% increase in decolorization efficiency with addition of mediators; and the Laccase-Acetosyringone system was the fastest, with 94% of original dye (100 mgL−1) decolorized within 24 h. Electrochemical analysis to determine the redox properties of the mediators revealed that syringaldehyde did not produce any redox peaks, inferring that it was oxidized by laccase to other products, making it unavailable as a mediator, while acetosyringone and ABTS revealed two redox couples demonstrating the redox mediator properties of these compounds. Thus, acetosyringone served as an efficient natural redox mediator for laccase, aiding in increasing the rate of dye decolorization and power production in MFCs. Taken together, the results suggest that natural laccase redox mediators could have the potential to improve dye decolorization and power density in microbial fuel cells.


2022 ◽  
Author(s):  
Peng Li ◽  
Wenfeng Yuan ◽  
Yitie Huang ◽  
Caiyu Zhang ◽  
Chide Ni ◽  
...  

Abstract To identify suitable biocatalysts applied in microbial fuel cells (MFCs), Pseudomonas stutzeri S116 isolated from marine sludge was investigated, which possessed excellcent bioelectricity generation ability (BGA). Herein, P. stutzeri as a bioanode and biocathode achieved maximum output voltage (254.2 mV and 226.0 mV), and power density of (765 mW/m2 and 656.6 mW/m2). Complete genome sequencing of P. stutzeri was performed to reveal its potential microbial functions. The results exhibited that the strain was the ecologically dominant Pseudomonas, and its primary annotations were associated with energy production and conversion (6.84%), amino acid transport and metabolism (6.82%) and inorganic ion transport and metabolism (6.77%). The thirty-six genes involved in oxidative phosphorylation indicate that strain possesses an integrated electron transport chain. Moreover, many genes encoding redox mediators (mainly riboflavin and phenazine) were detected in the databases. Simultaneously, thiosulfate oxidization and dissimilatory nitrate reduction were annotated in the sulfur metabolism and nitrogen metabolism pathway. Gene function and cyclic voltammetry (CV) analysis indicated BGA of P. stutzeri probably was attributed to its cytochrome c and redox mediators, which enhance extracellular electron transfer (EET) rate.


2022 ◽  
Vol 301 ◽  
pp. 113924
Author(s):  
Tao Li ◽  
Xiao-Li Yang ◽  
Hai-Liang Song ◽  
Han Xu ◽  
Qiao-Ling Chen

Sign in / Sign up

Export Citation Format

Share Document