Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells

2015 ◽  
Vol 91 (1) ◽  
pp. 267-275 ◽  
Author(s):  
Xiaojing Li ◽  
Xin Wang ◽  
Lili Wan ◽  
Yueyong Zhang ◽  
Nan Li ◽  
...  
Author(s):  
Yayah Luthfiah ◽  
Pedy Artsanti

The performance of electricity producing of Dual Chamber Microbial Fuel Cells (MFCs) using wastewater of tempe industries without glucose addition (as control substrate) and with (2% and 4%) glucose addition was observed. The anode chamber contained a waste substrate and a cathode chamber contained a 0.1 M Potassium Permanganate electrolyte solution. The salt bridge was required to stabilize the charge between the cathode and anode chambers, and the electrodes attached to the anode and cathode chambers as the electron catcher. Voltages and currents were measured using multimeter. Optical Density measured at 486 nm wavelengths was performed to estimate bacterial growth activity. All of the cells were observed for 72 hours of running time. The results of Optical Density curves showed an increasing trend of absorbance during 72 hours of running time. These were in agreement with the resulting power density, which tended to increase until the 48th hour and then relatively stable especially for the substrate with 4% glucose addition. These MFCs system could also reduce COD by 1.52%, 9.76%, and 9.64% on control substrate, 2% glucose addition substrate, and 4% glucose addition substrate, respectively.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


Sign in / Sign up

Export Citation Format

Share Document