Correlation between mercury content and leaching characteristics in waste phosphor powder from spent UV curing lamp after thermal treatment

2020 ◽  
Vol 382 ◽  
pp. 121094 ◽  
Author(s):  
Seung-Ki Back ◽  
Bup-Mook Joung ◽  
Eun-Song Lee ◽  
Jin-Ho Sung ◽  
A.H.M. Mojammal ◽  
...  
2017 ◽  
Vol 34 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Seung-Ki Back ◽  
Bup-Mook Joung ◽  
Eun-Song Lee ◽  
Jin-Ho Sung ◽  
Seon-Jea Lee ◽  
...  

2007 ◽  
Vol 990 ◽  
Author(s):  
Olivier Gourhant ◽  
Vincent Jousseaume ◽  
Laurent Favennec ◽  
Aziz Zenasni ◽  
Patrick Maury ◽  
...  

ABSTRACTThe increase of integrated circuits performances requires ultra-low dielectric constant (ULK) materials to minimize the drawbacks of miniaturization. Amorphous SiOCH are promising candidates for ULK materials as porosity can be introduced via a two steps elaboration. In a first step, organo-silicon species and organic species are co-deposited by PECVD. Then, a thermal annealing, alone or assisted by UV radiation, removes the organic labile phase and creates pore inclusions into the final material. In this work, the extendibility of this porogen approach is investigated in order to lower the dielectric constant. An increase of the porogen loading in hybrid film is studied by tuning the precursors ratio injected in the plasma gas feed. The increase of organic species amount is operated in order to create more pores sites. However, the post-treatment does not lead automatically to higher porosity. Actually, an increase of the porosity is observed only until a porogen loading limit and decreases above this limit. The shrinkage of the film during the post-treatment can explain this limitation. For high ratios of porogen, the film shrinkage increases drastically and leads to a decrease of the porosity finally created. At last, the link between porosity and dielectric constant is enlightened and a minimum in term of K value is reached with both post-treatments: dielectric constant of 2.1 and 2.3 are obtained using respectively thermal treatment and UV curing.


2016 ◽  
Vol 10 ◽  
pp. 00101
Author(s):  
Michał Wichliński ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Author(s):  
R. E. Ferrell ◽  
G. G. Paulson ◽  
C. W. Walker

Selected area electron diffraction (SAD) has been used successfully to determine crystal structures, identify traces of minerals in rocks, and characterize the phases formed during thermal treatment of micron-sized particles. There is an increased interest in the method because it has the potential capability of identifying micron-sized pollutants in air and water samples. This paper is a short review of the theory behind SAD and a discussion of the sample preparation employed for the analysis of multiple component environmental samples.


Author(s):  
X. Qiu ◽  
A. K. Datye ◽  
T. T. Borek ◽  
R. T. Paine

Boron nitride derived from polymer precursors is of great interest for applications such as fibers, coatings and novel forms such as aerogels. The BN is prepared by the polymerization of functionalized borazine and thermal treatment in nitrogen at 1200°C. The BN powders obtained by this route are invariably trubostratic wherein the sheets of hexagonal BN are randomly oriented to yield the so-called turbostratic modification. Fib 1a and 1b show images of BN powder with the corresponding diffraction pattern in fig. 1c. The (0002) reflection from BN is seen as a diffuse ring with occational spots that come from crystals of BN such as those shown in fig. 1b. The (0002) lattice fringes of BN seen in these powders are the most characteristic indication of the crystallinity of the BN.


1977 ◽  
Vol 27 (1) ◽  
pp. 93-98
Author(s):  
Naim A. Fadl ◽  
Magdi Z. Sefain ◽  
Mohomed Rakha
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document