Reduction of polycyclic compounds and biphenyls generated by pyrolysis of industrial plastic waste by using supported metal catalysts: A case study of polyethylene terephthalate treatment

2020 ◽  
Vol 392 ◽  
pp. 122464 ◽  
Author(s):  
Soosan Kim ◽  
Chanyeong Park ◽  
Jechan Lee
2003 ◽  
Vol 85 (2-4) ◽  
pp. 113-124 ◽  
Author(s):  
B.K Min ◽  
A.K Santra ◽  
D.W Goodman

2016 ◽  
Author(s):  
Sara D. Bowman

One molecule often cited as a key building block chemical in the development of a biorenewables-based chemicals industry is 5-hydroxymethylfurfural (HMF). Derived from fructose and glucose, HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), a potential replacement for the non-renewable polyethylene terephthalate monomer comprising PET plastics. The oxidation of HMF with dioxygen over Pt and Au catalysts in aqueous solution offers an environmentally benign process for the production of renewables-based plastics.


ChemInform ◽  
2004 ◽  
Vol 35 (6) ◽  
Author(s):  
B. K. Min ◽  
A. K. Santra ◽  
D. W. Goodman

1999 ◽  
Vol 589 ◽  
Author(s):  
Jingyue Liu

AbstractThe use of a high-brightness field emission gun and novel secondary electron detection systems makes it possible to acquire nanometer-resolution surface images of bulk materials, even at low electron beam voltages. The advantages of low-voltage SEM include enhanced surface sensitivity, reduced sample charging on non-conducting materials, and significantly reduced electron range and interaction volume. High-resolution images formed by collecting the backscattered electron signal can give information about the size and spatial distribution of metal nanoparticles in supported catalysts. Low-voltage XEDS can provide compositional information of bulk samples with enhanced surface sensitivity and significantly improved spatial resolution. High-resolution SEM techniques enhance our ability to detect and, subsequently, analyze the composition of nanoparticles in supported metal catalysts. Applications of high-resolution SEM imaging and microanalysis techniques to the study of industrial supported catalysts are discussed.


Synthesis ◽  
2021 ◽  
Author(s):  
Tamao Ishida ◽  
Zhenzhong Zhang ◽  
Haruno Murayama ◽  
Eiji Yamamoto ◽  
Makoto Tokunaga

The C–H functionalization has been extensively studied as a direct C–C bond forming reaction with high atomic efficiency. The efforts have also been made on the reaction using supported catalysts, which are superior in terms of catalyst separation from the reaction mixture and reusability. In this review, an overview of the C–H functionalization reactions, especially for Pd and Au supported catalysts will be described. In particular, we discuss reaction mechanisms, active species, leaching, reusability, etc. 1 Introduction 2 Types of supported metal catalysts and their active species 3 Modes of C–H bond activation 4 Oxidative C–H C–H coupling of aryl compounds 5 C–H C–H coupling where one side is aromatic 6 C–H acylation of aromatic compounds and related reactions 7 Conclusion


2015 ◽  
Vol 54 (30) ◽  
pp. 8728-8731 ◽  
Author(s):  
René Kopelent ◽  
Jeroen A. van Bokhoven ◽  
Jakub Szlachetko ◽  
Jacinta Edebeli ◽  
Cristina Paun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document