scholarly journals Characterization of copper stress response in Fusarium tricinctum M6: A metal-resistant microorganism isolated from an acid mine drainage-affected environment

2021 ◽  
Vol 412 ◽  
pp. 125216
Author(s):  
José Oscar Bonilla ◽  
Eduardo Alberto Callegari ◽  
María Daniela Paez ◽  
Raúl Andrés Gil ◽  
Liliana Beatriz Villegas
2015 ◽  
Vol 23 (7) ◽  
pp. 6002-6011 ◽  
Author(s):  
T. Valente ◽  
M. J. Rivera ◽  
S. F. P. Almeida ◽  
C. Delgado ◽  
P. Gomes ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3910
Author(s):  
Saba Shirin ◽  
Aarif Jamal ◽  
Christina Emmanouil ◽  
Akhilesh Kumar Yadav

Acid mine drainage (AMD) occurs naturally in abandoned coal mines, and it contains hazardous toxic elements in varying concentrations. In the present research, AMD samples collected from an abandoned mine were treated with fly ash samples from four thermal power plants in Singrauli Coalfield in the proximate area, at optimized concentrations. The AMD samples were analyzed for physicochemical parameters and metal content before and after fly ash treatment. Morphological, geochemical and mineralogical characterization of the fly ash was performed using SEM, XRF and XRD. This laboratory-scale investigation indicated that fly ash had appreciable neutralization potential, increasing AMD pH and decreasing elemental and sulfate concentrations. Therefore, fly ash may be effectively used for AMD neutralization, and its suitability for the management of coalfield AMD pits should be assessed further.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Mariana Lemos ◽  
Teresa Valente ◽  
Paula Marinho Reis ◽  
Rita Fonseca ◽  
Itamar Delbem ◽  
...  

For more than 30 years, sulfide gold ores were treated in metallurgic plants located in Nova Lima, Minas Gerais, Brazil, and accumulated in the Cocoruto tailings dam. Both flotation and leaching tailings from a deactivated circuit, as well as roasted and leaching tailings from an ongoing plant, were studied for their acid mine drainage potential and elements’ mobility. Detailed characterization of both tailings types indicates the presence of fine-grain size material hosting substantial amounts of sulfides that exhibit distinct geochemical and mineralogical characteristics. The samples from the ongoing plant show high grades of Fe in the form of oxides, cyanide, and sulfates. Differently, samples from the old circuit shave higher average concentrations of Al (0.88%), Ca (2.4%), Mg (0.96%), and Mn (0.17%), present as silicates and carbonates. These samples also show relics of preserved sulfides, such as pyrite and pyrrhotite. Concentrations of Zn, Cu, Au, and As are higher in the tailings of the ongoing circuit, while Cr and Hg stand out in the tailings of the deactivated circuit. Although the obtained results show that the sulfide wastes do not tend to generate acid mine drainage, leaching tests indicate the possibility of mobilization of toxic elements, namely As and Mn in the old circuit, and Sb, As, Fe, Ni, and Se in the tailings of the plant that still works. This work highlights the need for proper management and control of tailing dams even in alkaline drainage environments such as the one of the Cocoruto dam. Furthermore, strong knowledge of the tailings’ dynamics in terms of geochemistry and mineralogy would be pivotal to support long-term decisions on wastes management and disposal.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zhen-Hao Luo ◽  
Qi Li ◽  
Yan Lai ◽  
Hao Chen ◽  
Bin Liao ◽  
...  

Recent genome-resolved metagenomic analyses of microbial communities from diverse environments have led to the discovery of many novel lineages that significantly expand the phylogenetic breadth of Archaea. Here, we report the genomic characterization of a new archaeal family based on five metagenome-assembled genomes retrieved from acid mine drainage sediments. Phylogenomic analyses placed these uncultivated archaea at the root of the candidate phylum Parvarchaeota, which expand this lesser-known phylum into two family levels. Genes involved in environmental adaptation and carbohydrate and protein utilization were identified in the ultra-small genomes (estimated size 0.53–0.76 Mb), indicating a survival strategy in this harsh environment (low pH and high heavy metal content). The detection of genes with homology to sulfocyanin suggested a potential involvement in iron cycling. Nevertheless, the absence of the ability to synthesize amino acids and nucleotides implies that these archaea may acquire these biomolecules from the environment or other community members. Applying evolutionary history analysis to Parvarchaeota suggested that members of the two families could broaden their niches by acquiring the potentials of utilizing different substrates. This study expands our knowledge of the diversity, metabolic capacity, and evolutionary history of the Parvarchaeota.


2009 ◽  
Vol 71 (3) ◽  
pp. 251-263 ◽  
Author(s):  
Feng Li ◽  
Jiyan Shi ◽  
Chaofeng Shen ◽  
Guangcun Chen ◽  
Shaoping Hu ◽  
...  

2020 ◽  
Vol 231 (4) ◽  
Author(s):  
María J. Rivera ◽  
María Santisteban ◽  
Javier Aroba ◽  
José Antonio Grande ◽  
José Miguel Dávila ◽  
...  

2013 ◽  
Vol 93 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Ryan R. Auld ◽  
Maxine Myre ◽  
Nadia C.S. Mykytczuk ◽  
Leo G. Leduc ◽  
Thomas J.S. Merritt

Sign in / Sign up

Export Citation Format

Share Document