scholarly journals The late flare in tidal disruption events due to the interaction of disk wind with dusty torus

2021 ◽  
Vol 32 ◽  
pp. 11-19
Author(s):  
Jialun Zhuang ◽  
Rong-Feng Shen
Author(s):  
Anne Inkenhaag ◽  
Peter G Jonker ◽  
Giacomo Cannizzaro ◽  
Daniel Mata Sánchez ◽  
Richard D Saxton

Abstract We present results of our analysis of spectra of the host galaxies of the candidate Tidal Disruption Events (TDEs) XMMSL1 J111527.3+180638 and PTF09axc to determine the nature of these transients. We subtract the starlight component from the host galaxy spectra to determine the origin of the nuclear emission lines. Using a Baldwin–Phillips–Terlevich (BPT) diagram we conclude that the host galaxy of XMMSL1 J111527.3+180638 is classified as a Seyfert galaxy, suggesting this transient is likely to be caused by (extreme) variability in the active galactic nucleus. We find that the host of PTF09axc falls in the ’star-forming’ region of the BPT-diagram, implying that the transient is a strong TDE candidate. For both galaxies we find a WISE-colour difference of W1 − W2 < 0.8, which means there is no indication of a dusty torus and therefore an active galactic nucleus, seemingly contradicting our BPT finding for the host of XMMSL1 J111527.3+180638. We discuss possible reasons for the discrepant results obtained through the two methods.


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Jane Lixin Dai ◽  
Giuseppe Lodato ◽  
Roseanne Cheng

2020 ◽  
Vol 500 (3) ◽  
pp. 4110-4125
Author(s):  
Elliot M Lynch ◽  
Gordon I Ogilvie

ABSTRACT Whether tidal disruption events circularize or accrete directly as highly eccentric discs is the subject of current research and appears to depend sensitively on the disc thermodynamics. One aspect of this problem that has not received much attention is that a highly eccentric disc must have a strong, non-hydrostatic variation of the disc scale height around each orbit. As a complement to numerical simulations carried out by other groups, we investigate the dynamical structure of TDE discs using the non-linear theory of eccentric accretion discs. In particular, we study the variation of physical quantities around each elliptical orbit, taking into account the dynamical vertical structure, as well as viscous dissipation and radiative cooling. The solutions include a structure similar to the nozzle-like structure seen in simulations. We find evidence for the existence of the thermal instability in highly eccentric discs dominated by radiation pressure. For thermally stable solutions many of our models indicate a failure of the α-prescription for turbulent stresses. We discuss the consequences of our results for the structure of eccentric TDE discs.


2021 ◽  
Vol 217 (3) ◽  
Author(s):  
E. M. Rossi ◽  
N. C. Stone ◽  
J. A. P. Law-Smith ◽  
M. Macleod ◽  
G. Lodato ◽  
...  

AbstractTidal disruption events (TDEs) are among the brightest transients in the optical, ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the tidal field of a massive black hole, triggering a chain of events which is – so far – incompletely understood. However, the disruption process has been studied extensively for almost half a century, and unlike the later stages of a TDE, our understanding of the disruption itself is reasonably well converged. In this Chapter, we review both analytical and numerical models for stellar tidal disruption. Starting with relatively simple, order-of-magnitude physics, we review models of increasing sophistication, the semi-analytic “affine formalism,” hydrodynamic simulations of the disruption of polytropic stars, and the most recent hydrodynamic results concerning the disruption of realistic stellar models. Our review surveys the immediate aftermath of disruption in both typical and more unusual TDEs, exploring how the fate of the tidal debris changes if one considers non-main sequence stars, deeply penetrating tidal encounters, binary star systems, and sub-parabolic orbits. The stellar tidal disruption process provides the initial conditions needed to model the formation of accretion flows around quiescent massive black holes, and in some cases may also lead to directly observable emission, for example via shock breakout, gravitational waves or runaway nuclear fusion in deeply plunging TDEs.


2013 ◽  
Vol 553 ◽  
pp. A53 ◽  
Author(s):  
D. Sluse ◽  
M. Kishimoto ◽  
T. Anguita ◽  
O. Wucknitz ◽  
J. Wambsganss

Author(s):  
Suk Yee Yong ◽  
Rachel L. Webster ◽  
Anthea L. King ◽  
Nicholas F. Bate ◽  
Matthew J. O’Dowd ◽  
...  

AbstractThe structure and kinematics of the broad line region in quasars are still unknown. One popular model is the disk-wind model that offers a geometric unification of a quasar based on the viewing angle. We construct a simple kinematical disk-wind model with a narrow outflowing wind angle. The model is combined with radiative transfer in the Sobolev, or high velocity, limit. We examine how angle of viewing affects the observed characteristics of the emission line. The line profiles were found to exhibit distinct properties depending on the orientation, wind opening angle, and region of the wind where the emission arises.At low inclination angle (close to face-on), we find that the shape of the emission line is asymmetric, narrow, and significantly blueshifted. As the inclination angle increases (close to edge-on), the line profile becomes more symmetric, broader, and less blueshifted. Additionally, lines that arise close to the base of the disk wind, near the accretion disk, tend to be broad and symmetric. Single-peaked line profiles are recovered for the intermediate and equatorial wind. The model is also able to reproduce a faster response in either the red or blue sides of the line profile, consistent with reverberation mapping studies.


Icarus ◽  
2008 ◽  
Vol 193 (2) ◽  
pp. 553-566 ◽  
Author(s):  
Kevin J. Walsh ◽  
Derek C. Richardson

Sign in / Sign up

Export Citation Format

Share Document