Infection courses, virological features and IFN-α responses of HBV genotypes in cell culture and animal models

Author(s):  
Min Zhang ◽  
Zhensheng Zhang ◽  
Michio Imamura ◽  
Mitsutaka Osawa ◽  
Yuji Teraoka ◽  
...  
1998 ◽  
Vol 42 (8) ◽  
pp. 1959-1965 ◽  
Author(s):  
Cynthia M. Theodos ◽  
Jeffrey K. Griffiths ◽  
Jennifer D’Onfro ◽  
Alexandra Fairfield ◽  
Saul Tzipori

ABSTRACT Nitazoxanide (NTZ), a drug currently being tested in human clinical trials for efficacy against chronic cryptosporidiosis, was assessed in cell culture and in two animal models. The inhibitory activity of NTZ was compared with that of paromomycin (PRM), a drug that is partially effective against Cryptosporidium parvum. A concentration of 10 μg of NTZ/ml (32 μM) consistently reduced parasite growth in cell culture by more than 90% with little evidence of drug-associated cytotoxicity, in contrast to an 80% reduction produced by PRM at 2,000 μg/ml (3.2 mM). In contrast to its efficacy in vitro, NTZ at either 100 or 200 mg/kg of body weight/day for 10 days was ineffective at reducing the parasite burden in C. parvum-infected, anti-gamma-interferon-conditioned SCID mice. Combined treatment with NTZ and PRM was no more effective than treatment with PRM alone. Finally, NTZ was partially effective at reducing the parasite burden in a gnotobiotic piglet diarrhea model when given orally for 11 days at 250 mg/kg/day but not at 125 mg/kg/day. However, the higher dose of NTZ induced a drug-related diarrhea in piglets that might have influenced its therapeutic efficacy. As we have previously reported, PRM was effective at markedly reducing the parasite burden in piglets at a dosage of 500 mg/kg/day. Our results indicate that of all of the models tested, the piglet diarrhea model most closely mimics the partial response to NTZ treatment reported to occur in patients with chronic cryptosporidiosis.


Author(s):  
Zachary Fralish ◽  
Ethan M. Lotz ◽  
Taylor Chavez ◽  
Alastair Khodabukus ◽  
Nenad Bursac

The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.


Pathogens ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 52 ◽  
Author(s):  
Nicole Lamond ◽  
Nancy Freitag

Protection of the developing fetus from pathogens is one of the many critical roles of the placenta. Listeria monocytogenes is one of a select number of pathogens that can cross the placental barrier and cause significant harm to the fetus, leading to spontaneous abortion, stillbirth, preterm labor, and disseminated neonate infection despite antibiotic treatment. Such severe outcomes serve to highlight the importance of understanding how L. monocytogenes mediates infiltration of the placental barrier. Here, we review what is currently known regarding vertical transmission of L. monocytogenes as a result of cell culture and animal models of infection. In vitro cell culture and organ models have been useful for the identification of L. monocytogenes virulence factors that contribute to placental invasion. Examples include members of the Internalin family of bacterial surface proteins such as Interalin (Inl)A, InlB, and InlP that promote invasion of cells at the maternal-fetal interface. A number of animal models have been used to interrogate L. monocytogenes vertical transmission, including mice, guinea pigs, gerbils, and non-human primates; each of these models has advantages while still not providing a comprehensive understanding of L. monocytogenes invasion of the human placenta and/or fetus. These models do, however, allow for the molecular investigation of the balance between fetal tolerance and immune protection from L. monocytogenes during pregnancy.


2005 ◽  
Vol 39 (11) ◽  
pp. 1489-1498 ◽  
Author(s):  
C LI ◽  
T WRIGHT ◽  
M DONG ◽  
Y DOMMELS ◽  
L TRUDEL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document