scholarly journals Prevention and control of multi-drug-resistant Gram-negative bacteria: recommendations from a Joint Working Party

2016 ◽  
Vol 92 ◽  
pp. S1-S44 ◽  
Author(s):  
A.P.R. Wilson ◽  
D.M. Livermore ◽  
J.A. Otter ◽  
R.E. Warren ◽  
P. Jenks ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256556
Author(s):  
Abera Abdeta ◽  
Adane Bitew ◽  
Surafel Fentaw ◽  
Estifanos Tsige ◽  
Dawit Assefa ◽  
...  

Background Multidrug resistant, extremely drug-resistant, pan-drug resistant, carbapenem-resistant, and carbapenemase-producing gram-negative bacteria are becoming more common in health care settings and are posing a growing threat to public health. Objective The study was aimed to detect and phenotypically characterize carbapenem no- susceptible gram-negative bacilli at the Ethiopian Public Health Institute. Materials and methods A prospective cross-sectional study was conducted from June 30, 2019, to May 30, 2020, at the national reference laboratory of the Ethiopian Public Health Institute. Clinical samples were collected, inoculated, and incubated for each sample in accordance with standard protocol. Antimicrobial susceptibility testing was conducted using Kirby-Bauer disk diffusion method. Identification was done using the traditional biochemical method. Multidrug-resistant and extensively drug-resistant isolates were classified using a standardized definition established by the European Centre for Disease Prevention and Control and the United States Centers for Disease Prevention and Control. Gram-negative organisms with reduced susceptibility to carbapenem antibiotics were considered candidate carbapenemase producers and subjected to modified carbapenem inactivation and simplified carbapenem inactivation methods. Meropenem with EDTA was used to differentiate metallo-β-lactamase (MBL) from serine carbapenemase. Meropenem (MRP)/meropenem + phenylboronic acid (MBO) were used to differentiate Klebsiella pneumoniae carbapenemase (KPC) from other serine carbapenemase producing gram-negative organisms. Results A total of 1,337 clinical specimens were analyzed, of which 429 gram-negative bacterial isolates were recovered. Out of 429 isolates, 319, 74, and 36 were Enterobacterales, Acinetobacter species, and Pseudomonas aeruginosa respectively. In our study, the prevalence of multidrug-resistant, extensively drug-resistant, carbapenemase-producing, and carbapenem nonsusceptible gram-negative bacilli were 45.2%, 7.7%, 5.4%, and 15.4% respectively. Out of 429 isolates, 66 demonstrated reduced susceptibility to the antibiotics meropenem and imipenem. These isolates were tested for carbapenemase production of which 34.8% (23/66) were carbapenemase producers. Out of 23 carbapenemase positive gram-negative bacteria, ten (10) and thirteen (13) were metallo-beta-lactamase and serine carbapenemase respectively. Three of 13 serine carbapenemase positive organisms were Klebsiella pneumoniae carbapenemase. Conclusion This study revealed an alarming level of antimicrobial resistance (AMR), with a high prevalence of multidrug-resistant (MDR) and extremely drug-resistant, carbapenemase-producing gram-negative bacteria, particularly among intensive care unit patients at the health facility level. These findings point to a scenario in which clinical management of infected patients becomes increasingly difficult and necessitates the use of “last-resort” antimicrobials likely exacerbating the magnitude of the global AMR crisis. This mandates robust AMR monitoring and an infection prevention and control program.


2021 ◽  
Author(s):  
Abera Abdeta ◽  
Adane Bitew ◽  
Surafel Fentaw ◽  
Estifanos Tsige ◽  
Dawit Assefa ◽  
...  

Background Multi-drug resistant, extremely drug-resistant, pan-drug resistant, carbapenem-resistant, and carbapenemase-producing gram-negative bacteria are becoming more common in health care settings and are posing a growing threat to public health. Objective The study was aimed to determine the magnitude of multi-drug resistant, extremely drug-resistant, carbapenem non-susceptible, and carbapenemase-producing gram-negative bacilli at Ethiopian Public Health Institute. Materials and methods Prospective cross-sectional study was conducted from June 30, 2019, to May 30, 2020, at the national reference laboratory of the Ethiopian Public Health Institute. Clinical samples were collected, inoculated, and incubated in accordance to standard protocol for each sample. Antimicrobial susceptibility testing was done using Kirby Bauer disk diffusion. Identification was done using the traditional biochemical method. Multidrug-resistant and extensively drug-resistant were classified using a standardized definition established by European Centers for Disease prevention and control and the United States Centers for Disease prevention and control experts. Carbapenemase production was confirmed by modified carbapenem inactivation and a simplified carbapenem inactivation method. Meropenem with EDTA was used to differentiate serine carbapenemase and Metallo β-lactamase. Results A total of 1337 clinical specimens were analyzed, of which 429-gram negative bacilli isolates were recovered. Out of 429 isolates 319, 74, and 36 were Enterobacterales, Acinetobacter species, and P. aeruginosa respectively. In our study, the prevalence of Multidrug-resistant, extensively drug-resistant, Carbapenemase-producing, and carbapenem non-susceptible Gram-negative bacilli were, 45.2%, 7.7%, 5.4%, and 15.4% respectively. Out of 66 isolates screened for Carbapenemase, 34.8% (23/66) were Carbapenemase enzyme producers. Ten out of twenty-three Carbapenemase-positive organisms were Metallo-beta-lactamase producers. Thirteen out of twenty-three isolates were serine carbapenemase producers. Three out of 13 serine Carbapenemase positive organisms were Klebsiella pneumoniae Carbapenemase. Conclusion The finding from this study revealed a high prevalence of Multidrug-resistant, extremely drug-resistant, carbapenemase-producing gram-negative bacteria, particularly among Intensive care unit patients at the health facility level, this necessitates a robust laboratory-based antimicrobial resistance monitoring and infection prevention and control program.


2016 ◽  
Vol 22 (10) ◽  
pp. 896-897 ◽  
Author(s):  
R. Freeman ◽  
D. Ironmonger ◽  
R. Puleston ◽  
K.L. Hopkins ◽  
W. Welfare ◽  
...  

2017 ◽  
Vol 64 (suppl_2) ◽  
pp. S51-S60 ◽  
Author(s):  
Nattawat Teerawattanapong ◽  
Kirati Kengkla ◽  
Piyameth Dilokthornsakul ◽  
Surasak Saokaew ◽  
Anucha Apisarnthanarak ◽  
...  

2013 ◽  
Vol 7 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Marta Martins ◽  
Matthew P McCusker ◽  
Miguel Viveiros ◽  
Isabel Couto ◽  
Séamus Fanning ◽  
...  

It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer cell membrane (in the case of Gram-negative bacteria). In addition, adaptation to the environment, such as quorum sensing and biofilm formation can also contribute to bacterial persistence. Due to the rapid emergence and spread of bacterial isolates showing resistance to several classes of antibiotics, methods that can rapidly and efficiently identify isolates whose resistance is due to active efflux have been developed. However, there is still a need for faster and more accurate methodologies. Conventional methods that evaluate bacterial efflux pump activity in liquid systems are available. However, these methods usually use common efflux pump substrates, such as ethidium bromide or radioactive antibiotics and therefore, require specialized instrumentation, which is not available in all laboratories. In this review, we will report the results obtained with the Ethidium Bromide-agar Cartwheel method. This is an easy, instrument-free, agar based method that has been modified to afford the simultaneous evaluation of as many as twelve bacterial strains. Due to its simplicity it can be applied to large collections of bacteria to rapidly screen for multi-drug resistant isolates that show an over-expression of their efflux systems. The principle of the method is simple and relies on the ability of the bacteria to expel a fluorescent molecule that is substrate for most efflux pumps, ethidium bromide. In this approach, the higher the concentration of ethidium bromide required to produce fluorescence of the bacterial mass, the greater the efflux capacity of the bacterial cells. We have tested and applied this method to a large number of Gram-positive and Gram-negative bacteria to detect efflux activity among these multi-drug resistant isolates. The presumptive efflux activity detected by the Ethidium Bromide-agar Cartwheel method was subsequently confirmed by the determination of the minimum inhibitory concentration for several antibiotics in the presence and absence of known efflux pump inhibitors.


Sign in / Sign up

Export Citation Format

Share Document