scholarly journals Virtual Rehabilitation of Elbow Flexion Following Nerve Transfer Reconstruction for Brachial Plexus Injuries Using the Single-Joint Hybrid Assisted Limb

Author(s):  
Kazuteru Doi ◽  
Dawn Sinn Yii Chia ◽  
Yasunori Hattori ◽  
Sotetsu Sakamoto
Neurosurgery ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. E516-E520 ◽  
Author(s):  
Leandro Pretto Flores

Abstract BACKGROUND AND IMPORTANCE: Restoration of elbow extension has not been considered of much importance regarding functional outcomes in brachial plexus surgery; however, the flexion of the elbow joint is only fully effective if the motion can be stabilized, what can be achieved solely if the triceps brachii is coactivated. To present a novel nerve transfer of a healthy motor fascicle from the ulnar nerve to the nerve of the long head of the triceps to restore the elbow extension function in brachial plexus injuries involving the upper and middle trunks. CLINICAL PRESENTATION: Case 1 is a 32-year-old man sustaining a right brachial extended upper plexus injury in a motorcycle accident 5 months before admission. The computed tomography myelogram demonstrated avulsion of the C5 and C6 roots. Case 2 is a 24-year-old man who sustained a C5-C7 injury to the left brachial plexus in a traffic accident 4 months before admission. Computed tomography myelogram demonstrated signs of C6 and C7 root avulsion. The technique included an incision at the medial border of the biceps, in the proximal third of the involved arm, followed by identification of the ulnar nerve, the radial nerve, and the branch to the long head of the triceps. The proximal stump of a motor fascicle from the ulnar nerve was sutured directly to the distal stump of the nerve of the long head of the triceps. Techniques to restore elbow flexion and shoulder abduction were applied in both cases. Triceps strength Medical Research Council M4 grade was obtained in both cases. CONCLUSION: The attempted nerve transfer was effective for restoration of elbow extension in primary brachial plexus surgery; however, it should be selected only for cases in which other reliable donor nerves were used to restore elbow flexion.


2019 ◽  
Vol 24 (03) ◽  
pp. 283-288
Author(s):  
Yusuke Nagano ◽  
Daisuke Kawamura ◽  
Alaa Terkawi ◽  
Atsushi Urita ◽  
Yuichiro Matsui ◽  
...  

Background: Partial ulnar nerve transfer to the biceps motor branch of the musculocutaneous nerve (Oberlin’s transfer) is a successful approach to restore elbow flexion in patients with upper brachial plexus injury (BPI). However, there is no report on more than 10 years subjective and objective outcomes. The purpose of this study was to clarify the long-term outcomes of Oberlin’s transfer based on the objective evaluation of elbow flexion strength and subjective functional evaluation of patients. Methods: Six patients with BPI who underwent Oberlin’s transfer were reviewed retrospectively by their medical records. The mean age at surgery was 29.5 years, and the mean follow-up duration was 13 years. The objective functional outcomes were evaluated by biceps muscle strength using the Medical Research Council (MRC) grade at preoperative, postoperative, and final follow-up. The patient-derived subjective functional outcomes were evaluated using the Quick Disability of the Arm, Shoulder, and Hand (QuickDASH) questionnaire at final follow-up. Results: All patients had MRC grade 0 (M0) or 1 (M1) elbow flexion strength before operation. Four patients gained M4 postoperatively and maintained or increased muscle strength at the final follow-up. One patient gained M3 postoperatively and at the final follow-up. Although one patient achieved M4 postoperatively, the strength was reduced to M2 due to additional disorder. The mean score of QuickDASH was 36.5 (range, 7–71). Patients were divided into two groups; three patients had lower scores and the other three patients had higher scores of QuickDASH. Conclusions: Oberlin’s transfer is effective in the restoration of elbow flexion and can maintain the strength for more than 10 years. Patients with upper BPI with restored elbow flexion strength and no complicated nerve disorders have over ten-year subjective satisfaction.


2020 ◽  
Vol 19 (3) ◽  
pp. 249-254
Author(s):  
Mariano Socolovsky ◽  
Marcio de Mendonça Cardoso ◽  
Ana Lovaglio ◽  
Gilda di Masi ◽  
Gonzalo Bonilla ◽  
...  

Abstract BACKGROUND The phrenic nerve has been extensively reported to be a very powerful source of transferable axons in brachial plexus injuries. The most used technique used is supraclavicular sectioning of this nerve. More recently, video-assisted thoracoscopic techniques have been reported as a good alternative, since harvesting a longer phrenic nerve avoids the need of an interposed graft. OBJECTIVE To compare grafting vs phrenic nerve transfer via thoracoscopy with respect to mean elbow strength at final follow-up. METHODS A retrospective analysis was conducted among patients who underwent phrenic nerve transfer for elbow flexion at 2 centers from 2008 to 2017. All data analysis was performed in order to determine statistical significance among the analyzed variables. RESULTS A total of 32 patients underwent supraclavicular phrenic nerve transfer, while 28 underwent phrenic nerve transfer via video-assisted thoracoscopy. Demographic characteristics were similar in both groups. A statistically significant difference in elbow flexion strength recovery was observed, favoring the supraclavicular phrenic nerve section group against the intrathoracic group (P = .036). A moderate though nonsignificant difference was observed favoring the same group in mean elbow flexion strength. Also, statistical differences included patient age (P = .01) and earlier time from trauma to surgery (P = .069). CONCLUSION Comparing supraclavicular sectioning of the nerve vs video-assisted, intrathoracic nerve sectioning to restore elbow flexion showed that the former yielded statistically better results than the latter, in terms of the percentage of patients who achieve at least level 3 MRC strength at final follow-up. Furthermore, larger scale prospective studies assessing the long-term effects of phrenic nerve transfers remain necessary.


2020 ◽  
Vol 45 (8) ◽  
pp. 818-826
Author(s):  
Dawn Sinn Yii Chia ◽  
Kazuteru Doi ◽  
Yasunori Hattori ◽  
Sotetsu Sakamoto

We compared the outcomes of 23 partial ulnar nerve and 15 intercostal nerve transfers for elbow flexion reconstruction in patients with C56 or C567 brachial plexus injuries using manual muscle power, dynamometric measurements of elbow flexion strength and electromyography. The range of elbow flexion and muscle strength recovery to Grade 3 or 4 were comparable between the two groups. The patients with C567 injuries had significantly stronger eccentric contraction after the partial ulnar nerve transfer than after the intercostal nerve transfer ( p < 0.05). Electromyography of individual muscles demonstrated that the patients with partial ulnar nerve transfers were unable to voluntarily isolate biceps contraction and recruited forearm flexors and extensors. The patients after partial ulnar nerve transfer had significantly more activity of the forearm muscles during concentric elbow flexion than after intercostal nerve transfers ( p < 0.05). We conclude that partial ulnar nerve transfers were superior to intercostal nerve transfers when assessed quantitatively with the dynamometer to evaluate elbow flexion, although simultaneous recruitment of forearm muscles may have contributed to the increased elbow flexion strength in the patients with the partial ulnar nerve transfer. Level of evidence: III


2018 ◽  
Vol 51 (02) ◽  
pp. 137-144
Author(s):  
Mukund Ramchandra Thatte ◽  
Binita Bharat Raut ◽  
Amita Shivyogi Hiremath ◽  
Sushil Ramesh Nehete ◽  
Nayana Somala Nayak

ABSTRACT Objective: To study the correlation of compound muscle action potential of donor nerves with the recovery of elbow flexion in Oberlin transfer in brachial plexus injury. Introduction: Distal nerve transfer using motor fascicle of ulnar or median nerve to restore elbow flexion is a part of reconstructive surgery after upper brachial plexus injury, first described by Oberlin et al. However, one of the most critical influences on functional outcome is number of functioning motor axons in donor fascicle which is reflected by its compound muscle action potential. We studied whether nerve transfers with donor nerves showing higher amplitudes will yield better reinnervation of muscle and therefore better function as estimated by clinical examination. Methods: We prospectively studied 30 cases of upper brachial plexus injury, of which were treated with Oberlin transfer using ulnar or median or both nerves. The prerequisites were no elbow flexion and hand and wrist flexors showing the power of more than Medical research Council MRC Grade 4. Donor nerves selected either ulnar or median having CMAP >4 mv in our electrophysiology laboratory during nerve conduction study. Patients were followed up for 1 year and assessed clinically for restoration of elbow flexion, weight tolerance. Results: A total of 30 patients of Oberlin transfer were evaluated for improvement power of biceps and elbow flexion. (MRC) grading was done at 1 year. Twenty-seven patients had a good result (MRC grade ≥3), i.e., 90% of patients. Based on the MRC grades, we categorised the patients into two groups as follows: Group A and Group B. Group A included patients with MRC Grade 4–5 and Group B included Grades 3–3.5. We tried to establish a correlation between CMAP and MRC scores by comparison of MRC grade patients for their pre CMAPs which revealed a statistically significant higher CMAPs between the groups. (Mann–Whitney U-test, P = 0.028). This indicates the association of higher pre-CMAPs with higher MRC grades. Conclusion: We conclude that higher the compound muscle action potential of donor nerves, better the recovery of elbow flexion in Oberlin transfer in brachial plexus injury.


2006 ◽  
Vol 117 (3) ◽  
pp. 915-919 ◽  
Author(s):  
Phillipe A. Liverneaux ◽  
Luis Carlos Diaz ◽  
Jean-Yves Beaulieu ◽  
Sibastien Durand ◽  
Christophe Oberlin

Author(s):  
Lydia Arfianti ◽  
Ratna Darjanti Haryadi

The purpose of this report was to evaluate the outcome of biofeedback muscle re-education after brachial plexus reconstruction. A case series was conducted based on registry data of Rehabilitation Outpatient Clinic. A total of 20 subjects underwent surgical reconstruction to restore elbow flexion in the period of 2012-2014 were included in the study. All 20 subjects received biofeedback muscle re-education until end June 2015 (data extraction). Oucome measures were time to recovery (months) after surgical reconstruction and patients’ compliance. Recovery is considered when muscle contraction of biceps (nerve transfer) and gracilis (free functional muscle transfer/ FFMT) are ≥ 100μV, recorded using EMG-surface electrode. Of 4 subjects underwent nerve transfer, all showed recovery with median time of 9 months. Of 16 subjects underwent FFMT, 5 showed recovery with median time of 9 months. The majority of subjects in both groups could comply with once in 2 weeks rehabilitation program.


Sign in / Sign up

Export Citation Format

Share Document