scholarly journals Understanding space–time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan

2010 ◽  
Vol 381 (3-4) ◽  
pp. 239-247 ◽  
Author(s):  
Hwa-Lung Yu ◽  
Hone-Jay Chu
2020 ◽  
Author(s):  
Dimitry Van der Zande ◽  
Aida Alvera-Azcárate ◽  
Charles Troupin ◽  
João Cardoso Dos Santos ◽  
Dries Van den Eynde

<p>High-quality satellite-based ocean colour products can provide valuable support and insights in the management and monitoring of coastal ecosystems. Today’s availability of Earth Observation (EO) data is unprecedented including medium resolution ocean colour systems (e.g. Sentinel-3/OLCI), high resolution land sensors (e.g. Sentinel-2/MSI) and geostationary satellites (e.g. MSG/SEVIRI). Each of these sensors offers specific advantages in terms of spatial, temporal or radiometric characteristics. In the Multi-Sync project, we developed advanced ocean colour products (i.e. remote sensing reflectance, turbidity, and chlorophyll a concentration) through the synergetic use of these multi-scale EO data taking advantage of spectral characteristics of traditional medium resolution sensors, the high spatial resolution of some land sensors and the high temporal resolution of geostationary sensors.</p><p>To achieve this goal a multi-scale DINEOF (Data Interpolating Empirical Orthogonal Functions) approach was developed to reconstruct missing data using empirical orthogonal functions (EOF), reduce noise and exploit spatio-temporal coherency by joining several spatial and temporal resolutions. Here we present the capacity of DINEOF to extract multi-scale information through the integration of Sentinel-3, Sentinel-2 and SEVIRI datasets.</p><p>The functionality of the advanced multi-scale products will be demonstrated in a case study for the Belgian Coastal Zone (BCZ) highly relevant to the user community: sediment transport modelling near the harbour of Zeebrugge in support of dredging operations. As stated in the OSPAR treaty (1992), Belgium is obliged to monitor and evaluate the effects of all human activities on the marine ecosystem. Dredging activities in and near Belgian harbors fall under this treaty and are performed daily to ensure accessibility of the port by ships. Optimization of these dredging activities requires monitoring data which is typically acquired through in situ observations or modelling data. In this case study we take advantage of Sentinel-3, Sentinel-2 and SEVIRI data characteristics to provide a satellite product that meets the end user requirements in terms of product quality and temporal/spatial resolution.</p><p> </p>


Author(s):  
Huug van den Dool

The purpose of this chapter is to discuss Empirical Orthogonal Functions (EOF), both in method and application. When dealing with teleconnections in the previous chapter we came very close to EOF, so it will be a natural extension of that theme. However, EOF opens the way to an alternative point of view about space–time relationships, especially correlation across distant times as in analogues. EOFs have been treated in book-size texts, most recently in Jolliffe (2002), a principal older reference being Preisendorfer (1988). The subject is extremely interdisciplinary, and each field has its own nomenclature, habits and notation. Jolliffe’s book is probably the best attempt to unify various fields. The term EOF appeared first in meteorology in Lorenz (1956). Zwiers and von Storch (1999) and Wilks (1995) devote lengthy single chapters to the topic. Here we will only briefly treat EOF or PCA (Principal Component Analysis) as it is called in most fields. Specifically we discuss how to set up the covariance matrix, how to calculate the EOF, what are their properties, advantages, disadvantages etc. We will do this in both space–time set-ups already alluded to in Equations (2.14) and (2.14a). There are no concrete rules as to how one constructs the covariance matrix. Hence there are in the literature matrices based on correlation, based on covariance, etc. Here we follow the conventions laid out in Chapter 2. The post-processing and display conventions of EOFs can also be quite confusing. Examples will be shown, for both daily and seasonal mean data, for both the Northern and Southern Hemisphere. EOF may or may not look like teleconnections. Therefore, as a diagnostic tool, EOFs may not always allow the interpretation some would wish. This has led to many proposed “simplifications” of the EOFs, which hopefully are more like teleconnections. However, regardless of physical interpretation, since EOFs are maximally efficient in retaining as much of the data set’s information as possible for as few degrees of freedom as possible they are ideally suited for empirical modeling. Indeed EOFs are an extremely popular tool these days.


2018 ◽  
Vol 10 (4) ◽  
pp. 498 ◽  
Author(s):  
Marco Correa-Ramirez ◽  
Carmen Morales ◽  
Ricardo Letelier ◽  
Valeria Anabalón ◽  
Samuel Hormazabal

Author(s):  
Huug van den Dool

This clear and accessible text describes the methods underlying short-term climate prediction at time scales of 2 weeks to a year. Although a difficult range to forecast accurately, there have been several important advances in the last ten years, most notably in understanding ocean-atmosphere interaction (El Nino for example), the release of global coverage data sets, and in prediction methods themselves. With an emphasis on the empirical approach, the text covers in detail empirical wave propagation, teleconnections, empirical orthogonal functions, and constructed analogue. It also provides a detailed description of nearly all methods used operationally in long-lead seasonal forecasts, with new examples and illustrations. The challenges of making a real time forecast are discussed, including protocol, format, and perceptions about users. Based where possible on global data sets, illustrations are not limited to the Northern Hemisphere, but include several examples from the Southern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document