Wavelet Empirical Orthogonal Functions of Space-Time-Frequency Regimes and Predictability of Southern Africa Summer Rainfall

2007 ◽  
Vol 12 (5) ◽  
pp. 513-523 ◽  
Author(s):  
Davison Mwale ◽  
Thian Yew Gan ◽  
Samuel S. P. Shen ◽  
Ting Ting Shu ◽  
Kyu-Myong Kim
MAUSAM ◽  
2021 ◽  
Vol 71 (4) ◽  
pp. 637-648
Author(s):  
OGWANG B. A. ◽  
ONGOMA V. ◽  
SHILENJE Z. W. ◽  
RAMOTUBEI T. S. ◽  
LETUMA M. ◽  
...  

Extreme weather events; floods and droughts are common in southern Africa (SA) consisting of 8 countries (Botswana, Namibia, South Africa, Lesotho, Swaziland, Mozambique, Zimbabwe, parts of Angola and Zambia). This study examines the linkage between the SA October-December (OND) rainfall, the Indian Ocean Dipole (IOD) and the South Atlantic Oscillation Dipole (SAOD). Empirical Orthogonal Functions (EOF) technique is used to establish the dominant mode of variability of OND rainfall, as correlation analysis is applied to quantify the relationship between the indices; IOD [Dipole Mode Index (DMI)], SAOD Index (SAODI) and OND rainfall variability. Results show that the dominant mode of variability of OND rainfall exhibits a dipole pattern over SA and there exists a significant correlation at 95% confidence level between the area average OND rainfall (rainfall index (RFI)) and DMI, with a correlation coefficient of -0.3. The relationship between the mean SA OND rainfall and the positive phase of IOD varies greatly in space, ranging from one country to another. Further analysis of the dry and wet of SAOND rainfall years reveal that wet years are associated with convergence at  surface level (850 hPa) and divergence at upper level (200 hPa), depicting rising motion in the region, whereas dry years are associated with divergence at low level and convergence at upper level, implying descending motion. The study recommends further research on a reduced spatial scale, for instance at a country level to ascertain the effect of IOD on individual country’s weather. This will help in accurate monitoring of the evolution of IOD events to improve quality of seasonal weather forecasts in the region.


Author(s):  
Huug van den Dool

The purpose of this chapter is to discuss Empirical Orthogonal Functions (EOF), both in method and application. When dealing with teleconnections in the previous chapter we came very close to EOF, so it will be a natural extension of that theme. However, EOF opens the way to an alternative point of view about space–time relationships, especially correlation across distant times as in analogues. EOFs have been treated in book-size texts, most recently in Jolliffe (2002), a principal older reference being Preisendorfer (1988). The subject is extremely interdisciplinary, and each field has its own nomenclature, habits and notation. Jolliffe’s book is probably the best attempt to unify various fields. The term EOF appeared first in meteorology in Lorenz (1956). Zwiers and von Storch (1999) and Wilks (1995) devote lengthy single chapters to the topic. Here we will only briefly treat EOF or PCA (Principal Component Analysis) as it is called in most fields. Specifically we discuss how to set up the covariance matrix, how to calculate the EOF, what are their properties, advantages, disadvantages etc. We will do this in both space–time set-ups already alluded to in Equations (2.14) and (2.14a). There are no concrete rules as to how one constructs the covariance matrix. Hence there are in the literature matrices based on correlation, based on covariance, etc. Here we follow the conventions laid out in Chapter 2. The post-processing and display conventions of EOFs can also be quite confusing. Examples will be shown, for both daily and seasonal mean data, for both the Northern and Southern Hemisphere. EOF may or may not look like teleconnections. Therefore, as a diagnostic tool, EOFs may not always allow the interpretation some would wish. This has led to many proposed “simplifications” of the EOFs, which hopefully are more like teleconnections. However, regardless of physical interpretation, since EOFs are maximally efficient in retaining as much of the data set’s information as possible for as few degrees of freedom as possible they are ideally suited for empirical modeling. Indeed EOFs are an extremely popular tool these days.


MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 185-190
Author(s):  
S.S. SINGH ◽  
S.V. DATAR ◽  
H.N. SRIVASTAVA

Interannual variability of Empirical Orthogonal Functions (EOF) based upon regional/global parameters, associated with the summer monsoon rainfall over different meteorological sub-divisions of the country have been discussed, based upon the data during the years 1958 to 1990 enabling us to identify three broad  sub-divisions of the country.   It was interesting to note that the first empirical orthogonal function did not show significant correlation with monsoon rainfall over most SUB-DIVISIONS of the NE and SE parts of the country. However, this EOF was found to be significantly correlated with the rainfall over the remaining meteorological sub-divisions of the country.  


2015 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Nur Farahiah Ibrahim ◽  
Zahari Abu Bakar ◽  
Azlina Idris

Channel estimation techniques for Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) based on comb type pilot arrangement with least-square error (LSE) estimator was investigated with space-time-frequency (STF) diversity implementation. The frequency offset in OFDM effected its performance. This was mitigated with the implementation of the presented inter-carrier interference self-cancellation (ICI-SC) techniques and different space-time subcarrier mapping. STF block coding in the system exploits the spatial, temporal and frequency diversity to improve performance. Estimated channel was fed into a decoder which combined the STF decoding together with the estimated channel coefficients using LSE estimator for equalization. The performance of the system was compared by measuring the symbol error rate with a PSK-16 and PSK-32. The results show that subcarrier mapping together with ICI-SC were able to increase the system performance. Introduction of channel estimation was also able to estimate the channel coefficient at only 5dB difference with a perfectly known channel.


Author(s):  
Huug van den Dool

This clear and accessible text describes the methods underlying short-term climate prediction at time scales of 2 weeks to a year. Although a difficult range to forecast accurately, there have been several important advances in the last ten years, most notably in understanding ocean-atmosphere interaction (El Nino for example), the release of global coverage data sets, and in prediction methods themselves. With an emphasis on the empirical approach, the text covers in detail empirical wave propagation, teleconnections, empirical orthogonal functions, and constructed analogue. It also provides a detailed description of nearly all methods used operationally in long-lead seasonal forecasts, with new examples and illustrations. The challenges of making a real time forecast are discussed, including protocol, format, and perceptions about users. Based where possible on global data sets, illustrations are not limited to the Northern Hemisphere, but include several examples from the Southern Hemisphere.


2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Harika Munagapati ◽  
Virendra M. Tiwari

The nature of hydrological seasonality over the Himalayan Glaciated Region (HGR) is complex due to varied precipitation patterns. The present study attempts to exemplify the spatio-temporal variation of hydrological mass over the HGR using time-variable gravity from the Gravity Recovery and Climate Experiment (GRACE) satellite for the period of 2002–2016 on seasonal and interannual timescales. The mass signal derived from GRACE data is decomposed using empirical orthogonal functions (EOFs), allowing us to identify the three broad divisions of HGR, i.e., western, central, and eastern, based on the seasonal mass gain or loss that corresponds to prevailing climatic changes. Further, causative relationships between climatic variables and the EOF decomposed signals are explored using the Granger causality algorithm. It appears that a causal relationship exists between total precipitation and total water storage from GRACE. EOF modes also indicate certain regional anomalies such as the Karakoram mass gain, which represents ongoing snow accumulation. Our causality result suggests that the excessive snowfall in 2005–2008 has initiated this mass gain. However, as our results indicate, despite the dampening of snowfall rates after 2008, mass has been steadily increasing in the Karakorum, which is attributed to the flattening of the temperature anomaly curve and subsequent lower melting after 2008.


Sign in / Sign up

Export Citation Format

Share Document