scholarly journals Electromagnetic induction as a basis for soil salinity monitoring within a Mediterranean irrigation district

2011 ◽  
Vol 405 (3-4) ◽  
pp. 427-438 ◽  
Author(s):  
J. Herrero ◽  
A. Netthisinghe ◽  
W.H. Hudnall ◽  
O. Pérez-Coveta
2021 ◽  
Author(s):  
Mario Ramos ◽  
Mohhamad Farzamian ◽  
José Luis Gómez ◽  
Alfonso González ◽  
Benito Salvatierra ◽  
...  

<p>Inversion of electromagnetic induction (EMI) signals is increasingly used for monitoring soil salinity in irrigated fields. In the B-XII irrigation district (SW Spain) the build-up of high salt concentrations in the topsoil is often related with a deficient performance of the underlying drainage system resulting in higher-than-average soil moisture conditions and salinization. This work aims at using EMI sensing and inversion to identify and localize problems (<em>e.g</em>. obstruction) with the drainage system in a 12.5 ha irrigated field in the B-XII irrigation district. The identified salinity hotspots in the EMI images are further validated using remotely sensed NDVI data and detailed information obtained during the cleaning of the drainage system, in addition to hard soil data. This study shows that EMI sensing and inversion can pinpoint problems with the drainage system that result in salinity hotspots and identify areas where the drainage system should be cleaned or substituted.</p><p> </p><p>This work is funded by the Spanish State Agency for Research through grants PID2019-104136RR-C21 and PID2019-104136RR-C22 and by IFAPA/FEDER through grant AVA2019.018.</p>


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Changshu Wang ◽  
Jingwei Wu ◽  
Wenzhi Zeng ◽  
Yan Zhu ◽  
Jiesheng Huang

The dry drainage system (DDS) is an alternative technique for controlling salinization. To quantify its role in soil salinity control, a five-year field observation from 2007 to 2011 was completed in a 2900 ha experimental plot in Yonglian Experimental Station, Hetao Irrigation District, China. Results showed that the groundwater table depth in the fallow areas quickly responded to the lateral recharge from the surrounding croplands during irrigation events. The groundwater electrical conductivity (GEC) of fallow areas increased from 5 mS·cm−1 to 15 mS·cm−1, whereas the GEC below croplands produced small fluctuations. The analysis of water and salt balance showed that the excess water that moved to fallow was roughly four times that moved by an artificial drainage system and with 7.7 times the corresponding salt. The fallow areas act as a drainage repository to receive excess water and salt from surrounding irrigated croplands. Slight salt accumulation occurred in irrigated croplands and salts accumulated, with an accelerating trend over the final two years. The evaporation capability weakened, partly due to the salt crust in the topsoil, and the decrease in soil permeability in the soil column, which was almost impermeable to water. Using halophytes may be an effective method to remove salts that have accumulated in fallow areas, having great economic and ecological value. A DDS may be effective and sustainable in situations where the fallow areas can sustain an upward capillary flux from planted halophytes.


1992 ◽  
Vol 56 (6) ◽  
pp. 1933-1941 ◽  
Author(s):  
J. M. H. Hendrickx ◽  
B. Baerends ◽  
Z. I. Raza ◽  
M. Sadig ◽  
M. Akram Chaudhry

2012 ◽  
Vol 57 (7) ◽  
pp. 1473-1486 ◽  
Author(s):  
F. Bouksila ◽  
M. Persson ◽  
A. Bahri ◽  
R. Berndtsson

Sign in / Sign up

Export Citation Format

Share Document