scholarly journals Potential evapotranspiration-related uncertainty in climate change impacts on river flow: An assessment for the Mekong River basin

2014 ◽  
Vol 510 ◽  
pp. 259-279 ◽  
Author(s):  
J.R. Thompson ◽  
A.J. Green ◽  
D.G. Kingston
2010 ◽  
Vol 7 (4) ◽  
pp. 5991-6024 ◽  
Author(s):  
D. G. Kingston ◽  
J. R. Thompson ◽  
G. Kite

Abstract. The Mekong River Basin comprises a key regional resource in Southeast Asia for sectors that include agriculture, fisheries and electricity production. Here we explore the potential impacts of climate change on freshwater resources within the river basin. We quantify uncertainty in these projections associated with GCM structure and climate sensitivity, as well as from hydrological model parameter specification. This is achieved by running pattern-scaled GCM output through a semi-distributed hydrological model (SLURP) of the basin. These pattern-scaled GCM outputs allow investigation of specific thresholds of global climate change including the postulated 2 ºC threshold of "dangerous" climate change as simulated using outputs from seven different GCMs. Detailed analysis of results based on HadCM3 climate scenarios reveals a relatively small but non-linear response of annual river discharge to increasing global mean temperature, ranging from a 5.4% decrease to 4.5% increase. Intra-annual (monthly) changes in river discharge are greater (from −16% to +55%, with greatest decreases in July and August, greatest increases in May and June) and result from complex and contrasting intra-basin changes in precipitation, evaporation and snow storage/melt. Whilst overall results are highly GCM dependent (in both direction and magnitude), this uncertainty is primarily driven by differences in GCM projections of future precipitation. In contrast, there is strong consistency between GCMs in terms of both increased potential evapotranspiration and a shift to an earlier and less substantial snowmelt season. Indeed, in the upper Mekong (Lancang sub-basin), the temperature-related signal in discharge is strong enough to overwhelm the precipitation-related uncertainty in the direction of change in discharge, with scenarios from all GCMs leading to increased river flow from April–June, and decreased flow from July–August.


2010 ◽  
Vol 1 (2) ◽  
pp. 103-117 ◽  
Author(s):  
M. Keskinen ◽  
S. Chinvanno ◽  
M. Kummu ◽  
P. Nuorteva ◽  
A. Snidvongs ◽  
...  

Adaptation to climate change has become one of the focal points of current development discussion. This article summarises the findings from a multidisciplinary research project looking at climate change impacts and adaptation in the Mekong River Basin in Southeast Asia. The research highlights the central role that the hydrological cycle has in mediating climate change impacts on ecosystems and societies. The findings indicate that climate change should not be studied in isolation, as there are several other factors that are affecting the hydrological cycle. In the Mekong, the most important such factor is the on-going hydropower development that is likely to induce changes at least as radical as climate change, but with shorter timescales. The article concludes that climate change adaptation should broaden its view to consider environmental changes likely to occur due to different factors at various spatial and temporal scales. It is also important to recognise that climate change adaptation is a dynamic, development-orientated process that should consider also broader socio-political context. To enable this, we propose that an area-based adaptation approach should be used more actively to complement the dominant sector-based approaches.


2021 ◽  
Vol 36 ◽  
pp. 100873
Author(s):  
Yishan Li ◽  
Hui Lu ◽  
Kun Yang ◽  
Wei Wang ◽  
Qiuhong Tang ◽  
...  

2019 ◽  
Vol 34 (S1) ◽  
pp. 367-380
Author(s):  
Dao Nguyen Khoi ◽  
Van Thinh Nguyen ◽  
Truong Thao Sam ◽  
Nguyen Ky Phung ◽  
Nguyen Thi Bay

Sign in / Sign up

Export Citation Format

Share Document