scholarly journals Uncertainty in climate change projections of discharge for the Mekong River Basin

2010 ◽  
Vol 7 (4) ◽  
pp. 5991-6024 ◽  
Author(s):  
D. G. Kingston ◽  
J. R. Thompson ◽  
G. Kite

Abstract. The Mekong River Basin comprises a key regional resource in Southeast Asia for sectors that include agriculture, fisheries and electricity production. Here we explore the potential impacts of climate change on freshwater resources within the river basin. We quantify uncertainty in these projections associated with GCM structure and climate sensitivity, as well as from hydrological model parameter specification. This is achieved by running pattern-scaled GCM output through a semi-distributed hydrological model (SLURP) of the basin. These pattern-scaled GCM outputs allow investigation of specific thresholds of global climate change including the postulated 2 ºC threshold of "dangerous" climate change as simulated using outputs from seven different GCMs. Detailed analysis of results based on HadCM3 climate scenarios reveals a relatively small but non-linear response of annual river discharge to increasing global mean temperature, ranging from a 5.4% decrease to 4.5% increase. Intra-annual (monthly) changes in river discharge are greater (from −16% to +55%, with greatest decreases in July and August, greatest increases in May and June) and result from complex and contrasting intra-basin changes in precipitation, evaporation and snow storage/melt. Whilst overall results are highly GCM dependent (in both direction and magnitude), this uncertainty is primarily driven by differences in GCM projections of future precipitation. In contrast, there is strong consistency between GCMs in terms of both increased potential evapotranspiration and a shift to an earlier and less substantial snowmelt season. Indeed, in the upper Mekong (Lancang sub-basin), the temperature-related signal in discharge is strong enough to overwhelm the precipitation-related uncertainty in the direction of change in discharge, with scenarios from all GCMs leading to increased river flow from April–June, and decreased flow from July–August.

2011 ◽  
Vol 15 (5) ◽  
pp. 1459-1471 ◽  
Author(s):  
D. G. Kingston ◽  
J. R. Thompson ◽  
G. Kite

Abstract. The Mekong River Basin is a key regional resource in Southeast Asia for sectors that include agriculture, fisheries and electricity production. Here we explore the potential impacts of climate change on freshwater resources within the river basin. We quantify uncertainty in these projections associated with GCM structure and climate sensitivity, as well as from hydrological model parameter specification. This is achieved by running pattern-scaled GCM scenarios through a semi-distributed hydrological model (SLURP) of the basin. Pattern-scaling allows investigation of specific thresholds of global climate change including the postulated 2 °C threshold of "dangerous" climate change. Impacts of a 2 °C rise in global mean temperature are investigated using seven different GCMs, providing an implicit analysis of uncertainty associated with GCM structure. Analysis of progressive changes in global mean temperature from 0.5 to 6 °C above the 1961–1990 baseline (using the HadCM3 GCM) reveals a relatively small but non-linear response of annual river discharge to increasing global mean temperature, ranging from a 5.4 % decrease to 4.5 % increase. Changes in mean monthly river discharge are greater (from −16 % to +55 %, with greatest decreases in July and August, greatest increases in May and June) and result from complex and contrasting intra-basin changes in precipitation, evaporation and snow storage/melt. Whilst overall results are highly GCM dependent (in both direction and magnitude), this uncertainty is primarily driven by differences in GCM projections of future precipitation. In contrast, there is strong consistency between GCMs in terms of both increased potential evapotranspiration and a shift to an earlier and less substantial snowmelt season. Indeed, in the upper Mekong (Lancang sub-basin), the temperature-related signal in discharge is strong enough to overwhelm the precipitation-related uncertainty in the direction of change in discharge, with scenarios from all GCMs leading to increased river flow from April–June and decreased flow from July–August.


2019 ◽  
Vol 34 (S1) ◽  
pp. 367-380
Author(s):  
Dao Nguyen Khoi ◽  
Van Thinh Nguyen ◽  
Truong Thao Sam ◽  
Nguyen Ky Phung ◽  
Nguyen Thi Bay

2021 ◽  
Vol 36 ◽  
pp. 100873
Author(s):  
Yishan Li ◽  
Hui Lu ◽  
Kun Yang ◽  
Wei Wang ◽  
Qiuhong Tang ◽  
...  

2021 ◽  
Vol 25 (4) ◽  
pp. 1883-1903
Author(s):  
You Lu ◽  
Fuqiang Tian ◽  
Liying Guo ◽  
Iolanda Borzì ◽  
Rupesh Patil ◽  
...  

Abstract. The transboundary Lancang–Mekong River basin has experienced dynamics of cooperation over the past several decades, which is a common emergent response in transboundary coupled human–water systems. Downstream countries rely on the Mekong River for fisheries, agriculture, navigation and ecological services, while upstream countries have been constructing dams to generate hydropower. The dam construction and operation in upstream countries have changed the seasonality of streamflow in downstream countries, affecting their economic benefits. More recently, cooperation between upstream and downstream countries has been enhanced throughout the river basin. In this study, we introduce a quantitative socio-hydrological model to simulate hydrological processes, reservoir operations, economic benefits, policy feedbacks and therefore dynamics of cooperation within the Lancang–Mekong River basin. The model reproduces the observed dynamics of cooperation in the basin revealed by sentiment analysis of news articles. Hydrological variability such as droughts and human activities associated with reservoir operations affect dynamics of cooperation between the riparian countries, with importance attached to indirect political benefits of upstream playing an important role in the enhancement of cooperation. In this way, our study generated understanding of emergent cooperation dynamics in this transboundary river basin, and the socio-hydrological model used here provides a useful new framework to investigate and improve transboundary water management elsewhere.


2009 ◽  
Vol 407 (20) ◽  
pp. 5356-5366 ◽  
Author(s):  
Chihiro Yoshimura ◽  
Maichun Zhou ◽  
Anthony S. Kiem ◽  
Kazuhiko Fukami ◽  
Hapuarachchi H.A. Prasantha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document