Can existing practices expected to lead to improved on-farm water use efficiency enable irrigators to effectively respond to reduced water entitlements in the Murray–Darling Basin?

2015 ◽  
Vol 528 ◽  
pp. 613-620 ◽  
Author(s):  
Jenifer L. Ticehurst ◽  
Allan L. Curtis
2003 ◽  
Vol 48 (7) ◽  
pp. 191-196 ◽  
Author(s):  
P.J. Goyne ◽  
G.T. McIntyre

The Cotton and Grains Adoption Program of the Queensland Rural Water Use Efficiency Initiative is targeting five major irrigation regions in the state with the objective to develop better irrigation water use efficiency (WUE) through the adoption of best management practices in irrigation. The major beneficiaries of the program will be industries, irrigators and local communities. The benefits will flow via two avenues: increased production and profit resulting from improved WUE and improved environmental health as a consequence of greatly reduced runoff of irrigation tailwater into rivers and streams. This in turn will reduce the risk of nutrient and pesticide contamination of waterways. As a side effect, the work is likely to contribute to an improved public image of the cotton and grain industries. In each of the five regions, WUE officers have established grower groups to assist in providing local input into the specific objectives of extension and demonstration activities. The groups also assist in developing growersÕ perceptions of ownership of the work. Activities are based around four on-farm demonstration sites in each region where irrigation management techniques and hardware are showcased. A key theme of the program is monitoring water use. This is applied both to on-farm storage and distribution as well as to application methods and in-field management. This paper describes the project, its activities and successes.


2020 ◽  
Vol 112 (1) ◽  
pp. 578-591 ◽  
Author(s):  
Yao Guo ◽  
Wen Yin ◽  
Zhilong Fan ◽  
Falong Hu ◽  
Hong Fan ◽  
...  

2013 ◽  
Vol 64 (12) ◽  
pp. 1033 ◽  
Author(s):  
Guy Roth ◽  
Graham Harris ◽  
Malcolm Gillies ◽  
Janelle Montgomery ◽  
David Wigginton

The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6–7 ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729 mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3 kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.


2010 ◽  
Vol 10 ◽  
pp. 1483-1497 ◽  
Author(s):  
Chunlin He

Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.


1987 ◽  
Vol 23 (2) ◽  
pp. 113-158 ◽  
Author(s):  
P. J. M. Cooper ◽  
P. J. Gregory ◽  
D. Tully ◽  
H. C. Harris

SummaryFarming systems in west Asia and north Africa have evolved to cope with the problems of highly variable and, frequently, chronically deficient rainfall. Cereals (mainly wheat and barley) are the dominant arable crops with food legumes (chickpea, lentil and faba bean) occupying only 5 to 10% of the area planted to cereals. Livestock is closely integrated into the farming system and crop production practices often reflect the importance of animals as a major source of income, particularly on the smaller farms. Soils of the region are predominantly calcareous, frequently phosphate deficient, and their depth and texture are important in determining the maximum amount of water that can be stored which, in turn, may determine the effective length of the growing season.Rain falls mainly during the winter months so that crops must often rely on stored soil moisture when they are growing most rapidly. Analysis of equations relating crop growth and water use shows that there are three ways in which the ‘water use efficiency’ of dry matter production can be increased. First, the amount of dry matter produced per unit of water transpired might be increased; second, if the water supply is limited, the amount of water transpired might be increased relative to evaporation from the soil surface; and third, the total amount of water used might be increased to produce extra growth provided that this results in increased transpiration rather than simply increasing evaporation from the soil surface.These three possible routes to increased crop growth are reviewed in relation to possible improvements in water management and crop genotypes in the Mediterranean environment. Scope for improving transpiration efficiency is limited although genotypic differences exist and may be useful in the future. More immediately, changes in crop management, such as applications of fertilizer, improved tillage and better weed control, will all increase the amount of water transpired. Application of mulches will also reduce evaporation from the soil surface but crop residues are usually eaten by livestock and are, therefore, often unavailable.The barley/livestock farming system of west Asia is used as a case study to illustrate how the Fanning Systems Programme of ICARDA has developed on-farm research programmes of direct relevance to current farming systems. Research on experimental sites directed at improving water use efficiency has been developed into on-farm trials and into collaborative trials with the Syrian Soils Directorate.


2015 ◽  
Vol 210 (2) ◽  
pp. 431-442 ◽  
Author(s):  
Zhiqun Huang ◽  
Bao Liu ◽  
Murray Davis ◽  
Jordi Sardans ◽  
Josep Peñuelas ◽  
...  

Water Policy ◽  
2011 ◽  
Vol 13 (1) ◽  
pp. 1-17 ◽  
Author(s):  
M. Ejaz Qureshi ◽  
R. Quentin Grafton ◽  
Mac Kirby ◽  
Munir A. Hanjra

This paper examines water use efficiency and economic efficiency with a particular focus on the Murray-Darling Basin of Australia and the stated policy goal of increasing environmental flows of water in the Basin. The different measures of efficiency are explained, and their implications for water reform and the efficacy of market based approaches to addressing the water scarcity issues and environmental flow needs are explored. Public policies to subsidize investments for improvements in irrigation efficiency are shown not to be currently cost effective compared to alternatives, such as buying water through water markets. The implications of these findings, and the factors that determine the demand for irrigation water by competing uses, can guide policy makers undertaking water reforms in the agricultural sector to mitigate the environmental consequences of overuse of water resources.


Sign in / Sign up

Export Citation Format

Share Document