Simple solutions for steady–state diffuse recharge evaluation in sloping homogeneous unconfined aquifers by means of atmospheric tracers

2016 ◽  
Vol 540 ◽  
pp. 287-305 ◽  
Author(s):  
Emilio Custodio ◽  
Jorge Jódar
Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1834
Author(s):  
Yuxi Li ◽  
Wanglin Li ◽  
Jiapeng He ◽  
Xiaojiao Zhang ◽  
Xinyi Li

Infiltration and anti-filtration recharge-pumping wells (hereinafter, referred to as IAF recharge-pumping wells) can enable rain-flood flowing in rivers or channel recharge to aquifers, in flood periods, and pump groundwater to be utilized in non-flood periods. In this study, a round IAF recharge-pumping well and a square IAF recharge-pumping well were developed, the structure and characteristic were introduced, the calculation equations of single-well recharge quantity of IAF recharge-pumping wells, in unconfined aquifers were deduced, and the steady-state flow recharge test was conducted in the laboratory. The conclusions were as follows. The theoretical equation of the single-well recharge quantity was reasonable. Compared to existing anti-filtration recharge wells, the new IAF recharge-pumping well had stronger anti-deposit and anti-scour abilities and the single-well recharge quantity increased by 400%. Compared to the square IAF recharge-pumping well, the round IAF recharge-pumping well had a better inlet flow pattern and a larger single-well recharge quantity. With an increase in the test times, the single-well recharge quantity gradually decreased and tended to be stable. The existence of the pumping pipe had a little influence on the single-well recharge quantity.


2005 ◽  
Vol 36 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Mehmet E. Birpinar ◽  
Ayhan Gazioglu

A simple analytical method has been used for estimating the storage coefficient provided that transmissivity of the aquifer is known at the quasi-steady-state condition in confined or unconfined aquifers. The application of the method has been performed for unconfined and confined aquifer test data in Chaj Doab, Pakistan with observation wells and compared with conventional methods in the groundwater flow literature dealing with pumping tests. The results from the methodology presented in this paper conform well in practice with the results obtained from the traditional methods on the basis of order of magnitude.


1987 ◽  
Vol 18 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Zekâi Şen

A method has been proposed for determining a unique storage coefficient value for confined and unconfined aquifers tapped by a large diameter well. The prerequisites for the application of this method are estimation of the transmissivity value and the field measurements of well radius, pumping discharge and time-drawdown measurements at large times, or preferably at the steady or quasi-steady state flow conditions. The application of the method does not require any complicated mathematical procedure of the classical type curve matching procedures. It is recommended especially as a supplementary method to the existing techniques in determining the storage coefficient.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


Sign in / Sign up

Export Citation Format

Share Document