Implementation of evapotranspiration data assimilation with catchment scale distributed hydrological model via an ensemble Kalman Filter

2017 ◽  
Vol 549 ◽  
pp. 685-702 ◽  
Author(s):  
Lei Zou ◽  
Chesheng Zhan ◽  
Jun Xia ◽  
Tiejun Wang ◽  
Christopher J. Gippel
RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Karena Quiroz Jiménez ◽  
Walter Collischonn ◽  
Rodrigo Cauduro Dias de Paiva

ABSTRACT In this work, the data assimilation method namely ensemble Kalman filter (EnKF) is applied to the Tocantins River basin. This method assimilates streamflow results by using a distributed hydrological model. The performance of the EnKF is also compared with an empirical assimilation method for hourly time intervals, in which two applications based on information transfer from gauged to ungauged sites and real time streamflow forecasting are assessed. In the first application, both assimilation methods are able to transfer streamflow to ungauged sites, obtaining better results when more than one station located upstream or downstream of the basin are gauged. In the second application, integration of a real time forecast model with EnKF is able to absorb errors at the beginning of the forecast. Therefore, a greater efficiency in the Nash-Sutcliffe index for the first 144 hours in advance in relation to its counterpart without assimilation is obtained. Finally, a comparison between both data assimilation methods shows a greater advantage for the EnKF in long lead times.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Yongwei Liu ◽  
Wen Wang ◽  
Yiming Hu ◽  
Wei Cui

This study investigates the capability of improving the distributed hydrological model performance by assimilating the streamflow observations. Incorrectly estimated model states will lead to discrepancies between the observed and estimated streamflow. Consequently, streamflow observations can be used to update the model states, and the improved model states will eventually benefit the streamflow predictions. This study tests this concept in upper Huai River basin. We assimilate the streamflow observations sequentially into the Soil and Water Assessment Tool (SWAT) using the ensemble Kalman filter (EnKF) to update the model states. Both synthetic experiments and real data application are used to demonstrate the benefit of this data assimilation scheme. The experiment shows that assimilating the streamflow observations at interior sites significantly improves the streamflow predictions for the whole basin. Assimilating the catchment outlet streamflow improves the streamflow predictions near the catchment outlet. In real data case, the estimated streamflow at the catchment outlet is significantly improved by assimilating the in situ streamflow measurements at interior gauges. Assimilating the in situ catchment outlet streamflow also improves the streamflow prediction of one interior location on the main reach. This may demonstrate that updating model states using streamflow observations can constrain the flux estimates in distributed hydrological modeling.


Author(s):  
Nicolas Papadakis ◽  
Etienne Mémin ◽  
Anne Cuzol ◽  
Nicolas Gengembre

2016 ◽  
Vol 66 (8) ◽  
pp. 955-971 ◽  
Author(s):  
Stéphanie Ponsar ◽  
Patrick Luyten ◽  
Valérie Dulière

Icarus ◽  
2010 ◽  
Vol 209 (2) ◽  
pp. 470-481 ◽  
Author(s):  
Matthew J. Hoffman ◽  
Steven J. Greybush ◽  
R. John Wilson ◽  
Gyorgyi Gyarmati ◽  
Ross N. Hoffman ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. 1984-1999 ◽  
Author(s):  
Ahmadreza Zamani ◽  
Ahmadreza Azimian ◽  
Arnold Heemink ◽  
Dimitri Solomatine

Sign in / Sign up

Export Citation Format

Share Document