Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S

2020 ◽  
Vol 580 ◽  
pp. 124351 ◽  
Author(s):  
Qiangqiang Yuan ◽  
Hongzhang Xu ◽  
Tongwen Li ◽  
Huanfeng Shen ◽  
Liangpei Zhang
2021 ◽  
Vol 9 ◽  
Author(s):  
Ling Zeng ◽  
Quanming Liu ◽  
Linhai Jing ◽  
Ling Lan ◽  
Jun Feng

The combined influence of surface soil moisture and roughness on radar backscatters has been limiting SAR’s application in soil moisture retrieval. In the past research, multi-temporal analysis and artificial neural network (ANN) inversion of physically based forward models were regarded as promising methods to decouple that combined influence. However, the former does not consider soil roughness change over a relatively longer period and the latter makes it hard to thoroughly eliminate the effect of soil roughness. This study proposes to use generalized regression neural network (GRNN) to derive bare surface soil moisture (BSSM) from radar backscatter observations regardless of the effect of soil roughness (GRNN inversion of backscatter observations). This method not only can derive BSSM from radar backscatters, provided soil roughness is unknown in any long period, but also can train models based on small-size sample data so as to reduce the manual error of training data created by simulation of physically based models. The comparison of validations between BSSM-backscatter models and BSSM-roughness-backscatter models both analyzed by GRNN shows that the incorporation of soil roughness cannot raise the prediction accuracy of models and, instead, even reduce it, indicating that the combined influence is thoroughly decoupled when being analyzed by GRNN. Moreover, BSSM-backscatter models by GRNN are recommended due to their good prediction, even compared to those related models in past publications.


Author(s):  
A. G. Buevich ◽  
I. E. Subbotina ◽  
A. V. Shichkin ◽  
A. P. Sergeev ◽  
E. M. Baglaeva

Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.


2019 ◽  
Vol 20 (6) ◽  
pp. 1165-1182 ◽  
Author(s):  
Kaighin A. McColl ◽  
Qing He ◽  
Hui Lu ◽  
Dara Entekhabi

Abstract Land–atmosphere feedbacks occurring on daily to weekly time scales can magnify the intensity and duration of extreme weather events, such as droughts, heat waves, and convective storms. For such feedbacks to occur, the coupled land–atmosphere system must exhibit sufficient memory of soil moisture anomalies associated with the extreme event. The soil moisture autocorrelation e-folding time scale has been used previously to estimate soil moisture memory. However, the theoretical basis for this metric (i.e., that the land water budget is reasonably approximated by a red noise process) does not apply at finer spatial and temporal resolutions relevant to modern satellite observations and models. In this study, two memory time scale metrics are introduced that are relevant to modern satellite observations and models: the “long-term memory” τL and the “short-term memory” τS. Short- and long-term surface soil moisture (SSM) memory time scales are spatially anticorrelated at global scales in both a model and satellite observations, suggesting hot spots of land–atmosphere coupling will be located in different regions, depending on the time scale of the feedback. Furthermore, the spatial anticorrelation between τS and τL demonstrates the importance of characterizing these memory time scales separately, rather than mixing them as in previous studies.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3109
Author(s):  
Roïya Souissi ◽  
Ahmad Al Bitar ◽  
Mehrez Zribi

This paper explores the accuracy in using an artificial neural network (ANN) to estimate root-zone soil moisture (RZSM) at multiple worldwide locations using only in situ surface soil moisture (SSM) as a training dataset. The paper also addresses the transferability of the trained ANN across climatic and soil texture conditions. Data from the International Soil Moisture Network (ISMN) were collected for several networks with variable soil texture and climate classes. Several scaling, feature extraction, and training approaches were tested. An artificial neural network employing rolling averages (ANNRAV) of SSM over 10, 30, and 90 days was developed. The results show that applying a standard scaling (SSCA) to the ANN input features improves the correlation, Nash–Sutcliffe efficiency (NSE), and root mean square error (RMSE) for 52%, 91%, and 87%, respectively, of the tested stations, compared to MinMax scaling (MMSCA). Different training sets are suggested, namely, training on data from all networks, data from one network, or data of all networks excluding one. Based on these trainings, new transferability (TranI) and contribution (ContI) indices are defined. The results show that one network cannot provide the best prediction accuracy if used alone to train the ANN. They also show that the removal of the less contributing networks enhances performance. For example, elimination of the densest network (SCAN) from the training enhances the mean correlation by 20.5% and the mean NSE by 42.5%. This motivates the implementation of a data filtering technique based on the ANN’s performance. A median, max, and min correlation of 0.77, 0.96, and 0.65, respectively, are obtained by the model after data filtering. The performances are also analyzed with respect to the covered climatic regions and soil texture, providing insights into the robustness and limitations of the approach, namely, the need for complementary information in highly evaporative regions. In fact, the ANN using only SSM to predict RZSM has low performance when decoupling between the surface and root zones is observed. The application of ANN to obtain spatialized RZSM will require integrating remote sensing-based surface soil moisture in the future.


2016 ◽  
Vol 8 (11) ◽  
pp. 959 ◽  
Author(s):  
Nemesio Rodríguez-Fernández ◽  
Yann Kerr ◽  
Robin van der Schalie ◽  
Amen Al-Yaari ◽  
Jean-Pierre Wigneron ◽  
...  

2020 ◽  
Author(s):  
Alvaro Gonzalez-Reyes ◽  
Duncan Christie ◽  
Carlos LeQuesne ◽  
Moises Rojas-Badilla ◽  
Tomas Muñoz ◽  
...  

<p>Soil moisture is a key variable into the earth surface dynamics, however long-term in situ measurements are globally scarce. In the Mediterranean Andes of Chile (30° - 37°S) grow the long-lived conifer “Ciprés de la Cordillera” (Austrocedrus chilensis), which is a demonstrated hydroclimatic proxy capable to cover the last millennium. Previous paleoclimatic studies have documented a high sensitivity between tree species and several hydroclimatic variables such as precipitation, streamflow, snowpack and aridity indexes, but the lack of in situ soil moisture observations has precluded an assessment of the spatial growth responses to high-resolution soil moisture variability. Here, we use three A. chilensis chronologies to determine linkages with the satellite-based surface soil moisture product v04.5 generated by ESA. We found significant relationships between tree-growth an a soil moisture field across the 32° - 34°S spatial domain of western South America from January to September during 1985 – 2013 period (r = 0.65; P < 0.001). Temporal relationships between tree-growth and soil moisture satellite observations exhibit a significant spectral coherence associated to cycles around 7 years (P < 0.10) and a clear decadal variability. Based on our preliminary results and the present extensive network of A. chilensis tree-ring chronologies, this species appears as a promising proxy to reconstruct surface soil moisture variability derived from remote sensing over the last millennium in a topographically complex Andean region of South America.</p><p>Acknowledgements</p><p>Alvaro Gonzalez-Reyes wish to thank: CONICYT+PAI+CONVOCATORIA NACIONAL SUBVENCIÓN A INSTALACIÓN EN LA ACADEMIA CONVOCATORIA AÑO 2019 + PAI77190101</p>


Sign in / Sign up

Export Citation Format

Share Document