On the contribution of remote sensing-based calibration to model hydrological and hydraulic processes in tropical regions

2021 ◽  
Vol 597 ◽  
pp. 126184 ◽  
Author(s):  
A. Meyer Oliveira ◽  
A.S. Fleischmann ◽  
R.C.D. Paiva
1998 ◽  
Vol 64 (3) ◽  
pp. 292-315 ◽  
Author(s):  
Hugh Eva ◽  
Eric F. Lambin

2019 ◽  
Author(s):  
Shufen Pan ◽  
Naiqing Pan ◽  
Hanqin Tian ◽  
Pierre Friedlingstein ◽  
Stephen Sitch ◽  
...  

Abstract. Evapotranspiration (ET) is a critical component in global water cycle and links terrestrial water, carbon and energy cycles. Accurate estimate of terrestrial ET is important for hydrological, meteorological, and agricultural research and applications, such as quantifying surface energy and water budgets, weather forecasting, and scheduling of irrigation. However, direct measurement of global terrestrial ET is not feasible. Here, we first gave a retrospective introduction to the basic theory and recent developments of state-of-the-art approaches for estimating global terrestrial ET, including remote sensing-based physical models, machine learning algorithms and land surface models (LSMs). Then, we utilized six remote sensing-based models (including four physical models and two machine learning algorithms) and fourteen LSMs to analyze the spatial and temporal variations in global terrestrial ET. The results showed that the mean annual global terrestrial ET ranged from 50.7 × 103 km3 yr−1(454 mm yr−1)to 75.7 × 103 km3 yr−1 (6977 mm yr−1), with the average being 65.5 × 103 km3 yr−1 (588 mm yr−1), during 1982–2011. LSMs had significant uncertainty in the ET magnitude in tropical regions especially the Amazon Basin, while remote sensing-based ET products showed larger inter-model range in arid and semi-arid regions than LSMs. LSMs and remote sensing-based physical models presented much larger inter-annual variability (IAV) of ET than machine learning algorithms in southwestern U.S. and the Southern Hemisphere, particularly in Australia. LSMs suggested stronger control of precipitation on ET IAV than remote sensing-based models. The ensemble remote sensing-based physical models and machine-learning algorithm suggested significant increasing trends in global terrestrial ET at the rate of 0.62 mm yr−2 (p  0.05), even though most of the individual LSMs reproduced the increasing trend. Moreover, all models suggested a positive effect of vegetation greening on ET intensification. Spatially, all methods showed that ET significantly increased in western and southern Africa, western India and northeastern Australia, but decreased severely in southwestern U.S., southern South America and Mongolia. Discrepancies in ET trend mainly appeared in tropical regions like the Amazon Basin. The ensemble means of the three ET categories showed generally good consistency, however, considerable uncertainties still exist in both the temporal and spatial variations in global ET estimates. The uncertainties were induced by multiple factors, including parameterization of land processes, meteorological forcing, lack of in situ measurements, remote sensing acquisition and scaling effects. Improvements in the representation of water stress and canopy dynamics are essentially needed to reduce uncertainty in LSM-simulated ET. Utilization of latest satellite sensors and deep learning methods, theoretical advancements in nonequilibrium thermodynamics, and application of integrated methods that fuse different ET estimates or relevant key biophysical variables will improve the accuracy of remote sensing-based models.


Author(s):  
I. D. Sanches ◽  
R. Q. Feitosa ◽  
B. Montibeller ◽  
P. M. Achanccaray Diaz ◽  
A. J. B. Luiz ◽  
...  

Abstract. Applying remote sensing technology to map and monitor agriculture and its impacts can greatly contribute for the proper development of this activity, promoting efficient food, fiber and energy production. For that, not only remote sensing images are needed, but also ground truth information, which is a key factor for the development and improvement of methodologies using remote sensing data. While a variety of images are current available, inclusive cost-free images, field reference data is scarcer. For agricultural applications, especially in tropical regions such as Brazil, where the agriculture is very dynamic and diverse (recent agricultural frontiers, crop rotations, multiple cropping systems, several management practices, etc.), and cultivated over a vast territory, this task is not trivial. One way of boosting the researches in agricultural remote sensing is to stimulate people to share their data, and to foster different groups to use the same dataset, so distinct methods can be properly compared. In this context, our group created the LEM Benchmark Database (a project funded by the ISPRS Scientific Initiative project - 2017) from the Luiz Eduardo Magalhães (LEM) municipality, Bahia State, Brazil. The database contains a set of pre-processed multitemporal satellite images (Landsat-8/OLI, Sentinel-2/MSI and SAR band-C Sentinel-1) and shapefiles of agricultural fields with their correspondent monthly land use classes, covering the period of one Brazilian crop year (2017–2018). In this paper we present the first results obtained with this database.


1999 ◽  
Vol 165 (3) ◽  
pp. 327
Author(s):  
Doreen Boyd ◽  
Eugene A. Sharkov

Author(s):  
G Rushingabigwi ◽  
W Kalisa ◽  
P Nsengiyumva ◽  
F Zimulinda ◽  
D Mukanyiligira ◽  
...  

The desert's dust and anthropogenic biomass burning's black carbon (BC) in the tropical regions are associated with many effects on climate and air quality. The dust and BC are the selected aerosols, which affect health by polluting the breathable air. This research discusses the effects of both the aerosols, especially while they interact with the clouds. The respective aerosol extinction optical thickness (AOT) extinction was analysed with the sensible heat from Turbulence. The research purposes to quantitatively study the remote sensing data for fine particulate matter, PM2.5, heterogeneously mixing both the dust and the pulverized black carbon's soot or ash, to analyse at which levels PM2.5 can endanger human health in the sub-Saharan region. The mainly analysed data had been assimilated from different remote sensing tools; the Goddard interactive online visualization and analysis infrastructure (GIOVANNI) was in the centre of data collection; GIS, the research data analysis software. In results, the rise and fall of the averaged sensible heat were associated with the rise and fall of averaged aerosol extinction AOT; the direct effects of the selected aerosols on the clouds are also presented. Regarding the health effects, PM2.5 quantities are throughout beyond the tolerably recommended quantity of 25μg/m3; thus, having referred to erstwhile research, inhabitants would consume food and drug supplements which contain vanillic acid during dusty seasons. Keywords: Geographic Information System (GIS), remotely sensed data, spatio-temporal (data) analysis


2009 ◽  
Vol 87 (5) ◽  
pp. 469-484 ◽  
Author(s):  
Keeyoon Sung ◽  
Linda R. Brown ◽  
Robert A. Toth ◽  
Timothy J. Crawford

To support remote sensing of carbon dioxide in the troposphere, H2O pressure-broadened half-widths were obtained for 182 lines of CO2 in the 2250–2390 cm–1 region. For this, six spectra of CO2 were recorded at 0.003 89 cm–1 resolution using a Bruker IFS-125HR at the Jet Propulsion Laboratory. The absorption cell length was 6.14 cm, and the water pressures ranged from 20.1 to 26.5 torr (1 torr = 133.322 4 Pa) near room temperatures. Partial pressures of the species in the mixtures were determined by measuring selected line intensities in the v3 band of CO2 and the v2 band of H2O. Sample temperatures were validated by deriving rotational temperature from the v3 and v2 + v3 – v2 intensities of 12CO2 and those of CO (1–0). Positions, intensities, and half-widths were retrieved spectrum by spectrum using a nonlinear least-squares line-fitting algorithm, employing a standard Voigt line shape profile and an instrumental line shape consisting of a sinc function with aperture correction. Half-widths obtained for both the fundamental and the hot band of 12CO2 and the fundamental v3 band of 13CO2 had similar values. While half-widths of CO2 broadened by other atmospheric gases (such as N2, O2, CO2, and air) tend to decrease with increasing rotational quantum number J″, the H2O-broadened half-widths were observed to increase for intermediate J′′ (8 ≤ J′′ ≤ 42): ∼0.127 cm–1 atm–1 near J′′ = 8, and increasing to ∼0.143 cm–1 atm–1 (1 atm = 101.325 kPa) towards J″ = 42. Moreover, for 10 ≤ J″ ≤ 40, the empirical widths were within ∼2%−3% of theoretical calculations. Since water vapor could reach up to 5% of ambient atmospheric surface pressure in the tropical regions, water broadened half-widths are required to model tropospheric CO2, particularly for high-precision remote sensing, to achieve a sub-percent precision in the measurements of CO2 column averaged mixing ratio. Since little vibrational dependence in line broadening has been seen, these results at 4.3 µm can be used for other bands of CO2.


Sign in / Sign up

Export Citation Format

Share Document