Deep learning and pathomics analyses reveal cell nuclei as important features for mutation prediction of BRAF-mutated melanomas

Author(s):  
Randie H. Kim ◽  
Sofia Nomikou ◽  
Nicolas Coudray ◽  
George Jour ◽  
Zarmeena Dawood ◽  
...  
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Mingyu Chen ◽  
Bin Zhang ◽  
Win Topatana ◽  
Jiasheng Cao ◽  
Hepan Zhu ◽  
...  

2020 ◽  
Vol 33 (11) ◽  
pp. 2169-2185 ◽  
Author(s):  
Andrew J. Schaumberg ◽  
Wendy C. Juarez-Nicanor ◽  
Sarah J. Choudhury ◽  
Laura G. Pastrián ◽  
Bobbi S. Pritt ◽  
...  

Abstract Pathologists are responsible for rapidly providing a diagnosis on critical health issues. Challenging cases benefit from additional opinions of pathologist colleagues. In addition to on-site colleagues, there is an active worldwide community of pathologists on social media for complementary opinions. Such access to pathologists worldwide has the capacity to improve diagnostic accuracy and generate broader consensus on next steps in patient care. From Twitter we curate 13,626 images from 6,351 tweets from 25 pathologists from 13 countries. We supplement the Twitter data with 113,161 images from 1,074,484 PubMed articles. We develop machine learning and deep learning models to (i) accurately identify histopathology stains, (ii) discriminate between tissues, and (iii) differentiate disease states. Area Under Receiver Operating Characteristic (AUROC) is 0.805–0.996 for these tasks. We repurpose the disease classifier to search for similar disease states given an image and clinical covariates. We report precision@k = 1 = 0.7618 ± 0.0018 (chance 0.397 ± 0.004, mean ±stdev ). The classifiers find that texture and tissue are important clinico-visual features of disease. Deep features trained only on natural images (e.g., cats and dogs) substantially improved search performance, while pathology-specific deep features and cell nuclei features further improved search to a lesser extent. We implement a social media bot (@pathobot on Twitter) to use the trained classifiers to aid pathologists in obtaining real-time feedback on challenging cases. If a social media post containing pathology text and images mentions the bot, the bot generates quantitative predictions of disease state (normal/artifact/infection/injury/nontumor, preneoplastic/benign/low-grade-malignant-potential, or malignant) and lists similar cases across social media and PubMed. Our project has become a globally distributed expert system that facilitates pathological diagnosis and brings expertise to underserved regions or hospitals with less expertise in a particular disease. This is the first pan-tissue pan-disease (i.e., from infection to malignancy) method for prediction and search on social media, and the first pathology study prospectively tested in public on social media. We will share data through http://pathobotology.org. We expect our project to cultivate a more connected world of physicians and improve patient care worldwide.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1579 ◽  
Author(s):  
Muyi Sun ◽  
Wei Zhou ◽  
Xingqun Qi ◽  
Guanhong Zhang ◽  
Leonard Girnita ◽  
...  

Uveal melanoma is the most common primary intraocular malignancy in adults, with nearly half of all patients eventually developing metastases, which are invariably fatal. Manual assessment of the level of expression of the tumor suppressor BRCA1-associated protein 1 (BAP1) in tumor cell nuclei can identify patients with a high risk of developing metastases, but may suffer from poor reproducibility. In this study, we verified whether artificial intelligence could predict manual assessments of BAP1 expression in 47 enucleated eyes with uveal melanoma, collected from one European and one American referral center. Digitally scanned pathology slides were divided into 8176 patches, each with a size of 256 × 256 pixels. These were in turn divided into a training cohort of 6800 patches and a validation cohort of 1376 patches. A densely-connected classification network based on deep learning was then applied to each patch. This achieved a sensitivity of 97.1%, a specificity of 98.1%, an overall diagnostic accuracy of 97.1%, and an F1-score of 97.8% for the prediction of BAP1 expression in individual high resolution patches, and slightly less with lower resolution. The area under the receiver operating characteristic (ROC) curves of the deep learning model achieved an average of 0.99. On a full tumor level, our network classified all 47 tumors identically with an ophthalmic pathologist. We conclude that this deep learning model provides an accurate and reproducible method for the prediction of BAP1 expression in uveal melanoma.


2020 ◽  
Vol 10 (2) ◽  
pp. 615 ◽  
Author(s):  
Tomas Iesmantas ◽  
Agne Paulauskaite-Taraseviciene ◽  
Kristina Sutiene

(1) Background: The segmentation of cell nuclei is an essential task in a wide range of biomedical studies and clinical practices. The full automation of this process remains a challenge due to intra- and internuclear variations across a wide range of tissue morphologies, differences in staining protocols and imaging procedures. (2) Methods: A deep learning model with metric embeddings such as contrastive loss and triplet loss with semi-hard negative mining is proposed in order to accurately segment cell nuclei in a diverse set of microscopy images. The effectiveness of the proposed model was tested on a large-scale multi-tissue collection of microscopy image sets. (3) Results: The use of deep metric learning increased the overall segmentation prediction by 3.12% in the average value of Dice similarity coefficients as compared to no metric learning. In particular, the largest gain was observed for segmenting cell nuclei in H&E -stained images when deep learning network and triplet loss with semi-hard negative mining were considered for the task. (4) Conclusion: We conclude that deep metric learning gives an additional boost to the overall learning process and consequently improves the segmentation performance. Notably, the improvement ranges approximately between 0.13% and 22.31% for different types of images in the terms of Dice coefficients when compared to no metric deep learning.


Sign in / Sign up

Export Citation Format

Share Document