Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilizers

Author(s):  
Warunee Tanan ◽  
Jate Panichpakdee ◽  
Pitchayaporn Suwanakood ◽  
Sayant Saengsuwan
2015 ◽  
Vol 761 ◽  
pp. 536-541 ◽  
Author(s):  
Noraiham Mohamad ◽  
Nor Nadiah Abdul Hamid ◽  
Nor Abidah Abdul Aziz ◽  
Jeeferie Abd Razak ◽  
Umar Al Amani Azlan ◽  
...  

This study is to investigate the potential of ENR to be incorporated with chitosan for slow release urea fertilizer. In this research, mixture of chitosan and epoxidized natural rubber (ENR) was used as binder to take advantage of their biodegradable and polar characteristics, respectively. The effect of mixing formulation to the properties of fertilizer was studied. Firstly, the chitosan and ENR were diluted in toluene with the presence of bentonite as filler. Then, urea powder was mixed and stirred for 20 minutes before left to dry overnight in an oven at 60°C. Water absorption and water retention analysis were carried out on compressed pellets. The increase of ENR loading was observed to contribute to the increase of hydrophobic properties of the fertilizer. The findings were supported by compositional analysis using Fourier Transform Infrared spectroscopy (FTIR).


Author(s):  
Fartisincha Peingurta Andrew ◽  
Daniel T Gungula ◽  
Semiu A Kareem ◽  
Abdullahi M Saddiq ◽  
Esther F Adebayo ◽  
...  

In this study, a slow-release urea fertilizer hydrogel was synthesized from hydroxyl propyl methyl cellulose, polyvinyl alcohol and glycerol blends with paper (blended paper) as second layer. The fertilizer hydrogel was characterized by SEM, XRD and FTIR. Its retention in sandy soil, swelling behavior in distilled and tap water as well as slow-release behavior to urea were investigated. The results indicated that the fertilizer had good slow-release properties and ability to retain water in soil. However, the addition of blended paper as a second layer matrix was found to help improve the release properties of the fertilizer. The swelling kinetic of the hydrogel followed the Schott’s Second order model. The release kinetics of urea in water was best described by the Zero order model signifying that the release behavior was independent of fertilizer concentration


2013 ◽  
Vol 38 (8) ◽  
pp. 1494-1503 ◽  
Author(s):  
Xiao-Cui ZHANG ◽  
Qi-Gen DAI ◽  
Xing-Xing HU ◽  
De-Jian ZHU ◽  
Xiu-Wen DING ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Bing ◽  
Faming Wang ◽  
Yuhuan Sun ◽  
Jinsong Ren ◽  
Xiaogang Qu

An environmentally friendly biomimetic strategy has been presented and validated for the catalytic hydrogenation reaction in live bacteria. In situ formed ultra-fine metal nanoparticles can realize highly efficient asymmetric hydrogenation reactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaqi Wang ◽  
Yan Chen ◽  
Qinyao Xu ◽  
Miaomiao Cai ◽  
Qian Shi ◽  
...  

AbstractSuperhydrophobic sponges have considerable potential for oil/water separation. Most of the methods used for superhydrophobic modification of sponges require toxic or harmful solvents, which have the drawbacks of hazardous to environment, expensive, and complex to utilize. Moreover, the hydrophobic layer on the surface of sponge is often easily destroyed. In this paper, a highly efficient superhydrophobic sponge with excellent reusability was developed by using a facile, simple and environmentally friendly dopamine biomimetic bonding method. Different types of sponges, such as melamine, polyethylene or polyurethane sponge wastes, were used as raw materials to prepare superhydrophobic sponges, which possess the advantages of inexpensive and abundant. The effects of different dopamine polymerization time and different hydrophobic agent dosage on the hydrophobicity and oil absorption capacity of melamine sponges were optimized. The study results showed that the water contact angle of the superhydrophobic sponge could reach 153° with excellent organic solvent absorption capacity of 165.9 g/g. Furthermore, the superhydrophobic sponge retained approximately 92.1% of its initial absorption capacity after 35 reutilization cycles. More importantly, the dopamine biomimetic bonding superhydrophobic modification method can be used for different types of sponges. Therefore, a universally applicable, facile, simple and environmentally friendly superhydrophobic modification method for sponges was developed.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10497-10511
Author(s):  
Mehraneh Aghaei-Hashjin ◽  
Asieh Yahyazadeh ◽  
Esmayeel Abbaspour-Gilandeh

Polyhydroquinolines were obtained from a sequential four-component reaction between dimedone or 1,3-cyclohexandione, ethyl acetoacetate, or methyl acetoacetate as a β-ketoester, aldehydes, and ammonium acetate, with Mo@GAA-Fe3O4 MNPs as a green nanocatalyst.


Sign in / Sign up

Export Citation Format

Share Document