CTRP3 is a coronary artery calcification biomarker and protects against vascular calcification by inhibiting β-catenin nuclear translocation to prevent vascular smooth muscle cell osteogenic differentiation

Author(s):  
Demin Liu ◽  
Xiaowei Cui ◽  
Rui Lu ◽  
Haijuan Hu ◽  
Guoqiang Gu
2011 ◽  
Vol 219 (2) ◽  
pp. 440-447 ◽  
Author(s):  
Yiwen Liu ◽  
Tao Wang ◽  
Jianyun Yan ◽  
Naomi Jiagbogu ◽  
Daniëlle A.M. Heideman ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 211-216
Author(s):  
Lutfu Askin ◽  
Okan Tanriverdi ◽  
Hakan Tibilli ◽  
Serdar Turkmen

The relationship between serum vaspin levels and metabolic or coronary artery disease is currently of interest for researchers. Although adipokine concentrations have been shown to be increased significantly in atherosclerotic lesions, the role adipokines in the atherosclerotic process remains to be elucidated. Vaspin is a new biological marker associated with obesity and impaired insulin sensitivity. Plasma vaspin concentration has been shown to correlate with the severity of coronary artery disease. Vascular inflammation triggered by vaspin inhibits atherogenesis by suppressing macrophage foam cell formation and vascular smooth muscle cell migration and proliferation. Vaspin also contributes to plaque stabilization by increasing collagen content and reducing the intraplaque macrophage to vascular smooth muscle cell ratio. The therapeutic goal concerning vaspin is to fight atherosclerosis and related diseases, as well as to maintain vascular health.


2020 ◽  
Vol 15 ◽  
Author(s):  
Astrid Hubert ◽  
Andreas Seitz ◽  
Valeria Martínez Pereyra ◽  
Raffi Bekeredjian ◽  
Udo Sechtem ◽  
...  

Patients with angina pectoris, the cardinal symptom of myocardial ischaemia, yet without significant flow-limiting epicardial artery stenosis represent a diagnostic and therapeutic challenge. Coronary artery spasm (CAS) is an established cause for anginal chest pain in patients with angiographically unobstructed coronary arteries. CAS may occur at the epicardial level and/or in the microvasculature. Although the underlying pathophysiological mechanisms of CAS are still largely unclear, endothelial dysfunction and vascular smooth muscle cell (VSMC) hyperreactivity seem to be involved as major players, although their contribution to induce CAS is still seen as controversial. This article will look at the role and possible mechanistic interplay between an impaired endothelial and VSMC function in the pathogenesis of CAS.


2020 ◽  
Vol 127 (7) ◽  
pp. 855-873 ◽  
Author(s):  
Yuan Zhang ◽  
Yanfei Wang ◽  
Li Zhang ◽  
Luoxing Xia ◽  
Minhui Zheng ◽  
...  

Rationale: Kawasaki disease (KD) is an acute vasculitis of early childhood that can result in permanent coronary artery structural damage. The cause for this arterial vulnerability in up to 15% of patients with KD is unknown. Vascular smooth muscle cell dedifferentiation play a key role in the pathophysiology of medial damage and aneurysm formation, recognized arterial pathology in KD. Platelet hyperreactivity is also a hallmark of KD. We recently demonstrated that uptake of platelets and platelet-derived miRNAs influences vascular smooth muscle cell phenotype in vivo. Objective: We set out to explore whether platelet/vascular smooth muscle cell (VSMC) interactions contribute to coronary pathology in KD. Methods and Results: We prospectively recruited and studied 242 patients with KD, 75 of whom had documented coronary artery pathology. Genome-wide miRNA sequencing and droplet digital PCR demonstrated that patient with KD platelets have significant induction of miR-223 compared with healthy controls (HCs). Platelet-derived miR-223 has recently been shown to promote vascular smooth muscle quiescence and resolution of wound healing after vessel injury. Paradoxically, patients with KD with the most severe coronary pathology (giant coronary artery aneurysms) exhibited a lack of miR-223 induction. Hyperactive platelets isolated from patients with KD are readily taken up by VSMCs, delivering functional miR-223 into the VSMCs promoting VSMC differentiation via downregulation of PDGFRβ (platelet-derived growth factor receptor β). The lack of miR-223 induction in patients with severe coronary pathology leads to persistent VSMC dedifferentiation. In a mouse model of KD ( Lactobacillus casei cell wall extract injection), miR-223 knockout mice exhibited increased medial thickening, loss of contractile VSMCs in the media, and fragmentation of medial elastic fibers compared with WT mice, which demonstrated significant miR-223 induction upon Lactobacillus casei cell wall extract challenge. The excessive arterial damage in the miR-223 knockout could be rescued by adoptive transfer of platelet, administration of miR-223 mimics, or the PDGFRβ inhibitor imatinib mesylate. Interestingly, miR-223 levels progressively increase with age, with the lowest levels found in <5-year-old. This provides a basis for coronary pathology susceptibility in this very young cohort. Conclusions: Platelet-derived miR-223 (through PDGFRβ inhibition) promotes VSMC differentiation and resolution of KD induced vascular injury. Lack of miR-223 induction leads to severe coronary pathology characterized by VSMC dedifferentiation and medial damage. Detection of platelet-derived miR-223 in patients with KD (at the time of diagnosis) may identify patients at greatest risk of coronary artery pathology. Moreover, targeting platelet miR-223 or VSMC PDGFRβ represents potential therapeutic strategies to alleviate coronary pathology in KD. Graphic Abstract: A graphic abstract is available for this article.


Sign in / Sign up

Export Citation Format

Share Document