scholarly journals Associations between Vaspin Levels and Coronary Artery Disease

2020 ◽  
Vol 4 (3) ◽  
pp. 211-216
Author(s):  
Lutfu Askin ◽  
Okan Tanriverdi ◽  
Hakan Tibilli ◽  
Serdar Turkmen

The relationship between serum vaspin levels and metabolic or coronary artery disease is currently of interest for researchers. Although adipokine concentrations have been shown to be increased significantly in atherosclerotic lesions, the role adipokines in the atherosclerotic process remains to be elucidated. Vaspin is a new biological marker associated with obesity and impaired insulin sensitivity. Plasma vaspin concentration has been shown to correlate with the severity of coronary artery disease. Vascular inflammation triggered by vaspin inhibits atherogenesis by suppressing macrophage foam cell formation and vascular smooth muscle cell migration and proliferation. Vaspin also contributes to plaque stabilization by increasing collagen content and reducing the intraplaque macrophage to vascular smooth muscle cell ratio. The therapeutic goal concerning vaspin is to fight atherosclerosis and related diseases, as well as to maintain vascular health.

2018 ◽  
Author(s):  
Roshni Srivastava ◽  
Harshavardhan Rolyan ◽  
Yi Xie ◽  
Na Li ◽  
Neha Bhat ◽  
...  

AbstractGenetic variations in Wnt-coreceptor LRP6 and Wnt-regulated transcription factor TCF7L2 have been among the strongest genetic signals for type2 diabetes (T2DM) and coronary artery disease (CAD). Mice with a CAD-linked LRP6 mutation exhibit obstructive coronary artery disease characterized by reduced TCF7L2 expression and dedifferentiation of vascular smooth muscle cell (VSMC). While TCF7L2 maintains stemness and promotes proliferation in embryonic tissues and adult stem cells, its role and mechanisms of action in VSMC differentiation is not understood. Using multiple mouse models, we demonstrate here that TCF7L2 promotes differentiation and inhibits proliferation of VSMCs. TCF7L2 accomplishes these effects by stabilization of GATA6 and upregulation of SM-MHC and cell cycle inhibitors. Accordingly, TCF7L2 haploinsufficient mice exhibited increased susceptibility to, while mice overexpressing TCF7L2 were protected against injury-induced intimal hyperplasia compared to wildtype littermates. Consequently, the overexpression of TCF7L2 in LRP6 mutant mice rescued the injury induced intimal hyperplasia. These novel findings imply cell type-specific functional role of TCF7L2 and provide critical insight into poorly understood mechanisms underlying pathogenesis of intimal hyperplasia.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 890
Author(s):  
Keshav Raj Paudel ◽  
Dong-Wook Kim

Microparticles (MPs) are extracellular vesicles (0.1–1.0 μm in size), released in response to cell activation or apoptosis. Endothelial microparticles (EC-MP), vascular smooth muscle cell microparticles (VSMC-MP), and macrophage microparticles (MØ-MP) are key hallmarks of atherosclerosis progression. In our current study, we investigated the potent antioxidant activity of baicalin to ameliorate MP-induced vascular smooth muscle cell (VSMC) dysfunction and endothelial cell (EC) dysfunction, as well as the production of inflammatory mediators in macrophage (RAW264.7). In our study, baicalin suppressed the apoptosis, reactive oxygen species (ROS) generation, NO production, foam cell formation, protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in MØ-MP-induced RAW264.7. In addition, VSMC migration induced by VSMC-MP was dose-dependently inhibited by baicalin. Likewise, baicalin inhibits metalloproteinase-9 expression and suppresses VSMC-MP-induced VSMC proliferation by down-regulation of mitogen-activated protein kinase and proliferating cell nuclear antigen protein expressions. Baicalin also inhibited ROS production and apoptosis in VSMC. In EC, the marker of endothelial dysfunction (endothelial senescence, upregulation of ICAM, and ROS production) induced by EC-MP was halted by baicalin. Our results suggested that baicalin exerts potent biological activity to restore the function of EC and VSMC altered by their corresponding microparticles and inhibits the release of inflammation markers from activated macrophages.


2020 ◽  
Vol 15 ◽  
Author(s):  
Astrid Hubert ◽  
Andreas Seitz ◽  
Valeria Martínez Pereyra ◽  
Raffi Bekeredjian ◽  
Udo Sechtem ◽  
...  

Patients with angina pectoris, the cardinal symptom of myocardial ischaemia, yet without significant flow-limiting epicardial artery stenosis represent a diagnostic and therapeutic challenge. Coronary artery spasm (CAS) is an established cause for anginal chest pain in patients with angiographically unobstructed coronary arteries. CAS may occur at the epicardial level and/or in the microvasculature. Although the underlying pathophysiological mechanisms of CAS are still largely unclear, endothelial dysfunction and vascular smooth muscle cell (VSMC) hyperreactivity seem to be involved as major players, although their contribution to induce CAS is still seen as controversial. This article will look at the role and possible mechanistic interplay between an impaired endothelial and VSMC function in the pathogenesis of CAS.


Sign in / Sign up

Export Citation Format

Share Document