scholarly journals In silico prediction of deleterious single nucleotide polymorphism in human AKR1C3 gene and identification of potent inhibitors using molecular docking approach

Author(s):  
Saleh Abdullah Aloyuni
2018 ◽  
Vol 12 (1) ◽  
pp. 15-25
Author(s):  
Akhiyan Hadi Susanto ◽  
Widodo ◽  
Mohammad Saifur Rohman ◽  
Didik Huswo Utomo ◽  
Mifetika Lukitasari

Abstract Background Single nucleotide polymorphism (SNP) G–152A (rs11568020) in the promoter of the angiotensinogen gene (AGT) may modulate its transcription. Translation of mRNA to angiotensinogen induces hypertension during hypoxia. The G allele at position –152 is located within the hypoxia-response element (HRE) transcription factor-binding site for the hypoxia-inducible factor 1 (HIF-1) heterodimer. However, the function of the –152 site in HIF-1 binding is not fully elucidated. Objectives To determine the frequency of SNP G–152A in Indonesian patients with hypertension and the function of this SNP. Methods We determined the frequency of the SNP in 100 patients by direct sequencing, and the influence of SNP G–152A on predicted binding of HIF-1 to the HRE using a docking approach in silico. Results The AGT promoter in our patients had genetic variants –152G and –152A (19:1). Predicted binding indicated that HIF-1 directly contacts the major groove of the G allele, but not the A allele. Scoring according to weighted sum High Ambiguity Driven biomolecular DOCKing showed that the score for the A allele–HIF-1 complex (–47.1 ± 6.9 kcal/mol) was higher than that for the G allele–HIF-1 complex (–94.6 ± 14.1 kcal/mol), indicating more favorable binding of HIF-1 to the G allele. Conclusions SNP G–152A reduces the favorability of binding of HIF-1 to the HRE. The occurrence of this SNP in the AGT promoter of Indonesian patients with essential hypertension suggests that the G allele is a genetic susceptibility factor in hypertension regulated by HIF-1.


Meta Gene ◽  
2019 ◽  
Vol 21 ◽  
pp. 100578
Author(s):  
Tooba Yousefi ◽  
Seyed Mostafa Mir ◽  
Jahanbakhsh Asadi ◽  
Mehdi Tourani ◽  
Ansar Karimian ◽  
...  

Author(s):  
Christoph Gassner

ZusammenfassungDie erste molekulare Analyse einer menschlichen Blutgruppe erfolgte 1983 mittels eines Restriktions-Fragment-Längen-Polymorphismus (RFLP) am System Xg. Seither wurden in unzähligen Studien die molekularen Ursachen für Blutgruppen und deren Antigene erforscht,und das resultierende Wissen für eine ständige Verbesserung der entsprechenden Analysemethoden verwendet. Die Untersuchung kausaler Punktmutationen (Single Nucleotide Polymorphism, SNP) aller 36 von der International Society for Blood Transfusion (ISBT) anerkannten Blutgruppensysteme erlaubt heute eine der Serologie ebenbürtige, exakte Vorhersage der Blutgruppenantigene. In Patienten wird die molekulare Blutgruppenbestimmung bevorzugt in Form von Einzelprobenanalytik für die Diagnose von RhD-Varianten eingesetzt, um damit transfusionsrelevante Entscheidungen bezüglich RhD zu treffen und um die Rh-Prophylaxe noch zielsicherer zu steuern. An Spenderproben und im Hochdurchsatz ermöglicht die Blutgruppen-Genotypisierung die Schaffung einer ausreichenden Anzahl von Spender-Datensätzen, um immunisierte Patienten bestverträglich zu transfundieren oder deren Immunisierung bereits im Ansatz zu vermeiden. Gleichzeitig werden heutzutage an den gleichen Proben zusätzlich eine Vielzahl weiterer SNPs zur Identifikation von Spendern mit seltener Negativität für hochfrequente Antigene getestet. Derartig umfassende Spender-Datensätze werden bereits ideal genutzt für „In-silico-Kreuzproben“ eingesetzt. Next Generation Sequencing (NGS) ist auch in der Transfusionsmedizin der „neue Stern am Horizont“ und wird vermutlich innert weniger Jahre eine wichtige Rolle in der Analyse kompletter Blutgruppengenome (chronischer) Empfänger spielen. Blutgruppenbestimmung als frühestes Beispiel echter personalisierter Medizin wird in ihrer molekularen Version mit dazu beitragen, den gebührenden Platz der Transfusionsmedizin in der modernen Medizin zu behaupten.


PLoS Biology ◽  
2004 ◽  
Vol 2 (12) ◽  
pp. e393 ◽  
Author(s):  
Mathew T Pletcher ◽  
Philip McClurg ◽  
Serge Batalov ◽  
Andrew I Su ◽  
S. Whitney Barnes ◽  
...  

2020 ◽  
Author(s):  
A M U B Mahfuz ◽  
Md. Arif Khan

ABSTRACTT-box transcription factor 5 (TBX5) gene encodes the transcription factor TBX5 which plays a crucial role in the development of the heart and upper limbs. Alternative splicing resulting in several isoforms regulate the functions of this gene during the developmental process. Damaging single nucleotide variants in this gene alter the structure and disturb the functions of TBX5 and ultimately cause Holt-Oram Syndrome (HOS), an autosomal dominant disease where various congenital malformations of the heart (with or without conduction defects), upper limbs and shoulder girdles are observed. Besides HOS, TBX5 single nucleotide variants can also be associated with Dilated Cardiomyopathy, Atrial Fibrillation, and Tetralogy of Fallot without skeletal deformity.By exploiting available Single Nucleotide Polymorphism information in dbSNP, this study was designed to identify in silico the deleterious TBX5 SNPs, and predict their structural and functional consequences, and alteration of biochemical properties on the candidate protein. For this purpose, various reliable in silico analysis tools such as PROVEAN, SIFT, PolyPhen-2, MutPred2, PredictSNP1, PredictSNP2, MetaLR, MetaSVM, REVEL, ConSurf, NetsurfP-2.0, iStable 2.0, Missense3D, UTRdb, MirSNP, and Human Splicing Finder (HSF) have been used. 58 missense substitutions were found damaging by both sequence homology-based tools SIFT (Sorting Intolerant from Tolerant) and PROVEAN (Protein Variation Effect Analyzer), and structure homology-based tool PolyPhen-2 (Polymorphism Phenotyping-2). Among these 58 substitutions, 13 are already annotated as Pathogenic/Likely Pathogenic in ClinVar database, and so they were excluded. Then, the rest 45 high confidence substitutions were further scrutinized by various disease association predicting meta servers. Next, conservation profile of the native amino acid residues, their surface & solvent accessibility, and stability and structural integrity of the protein upon mutation were assessed. Analysis of 1 stop loss SNP, and 2 nonsense SNPs were done by PredictSNP2. Analysis of SNPs in the UTR region were done using UTRdb and MirSNP, and splice site SNPs were evaluated by Human Splicing Finder (HSF). This study provides a comprehensive list of most deleterious SNPs onTBX5 gene. The results from this study can help in early diagnosis of HOS and in relevant genetic counseling.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Linda Weni

Katalase (EC 1.11.16) adalah merupakan enzim antioksidan yang bertindak sebagai biokatalisator dengan mengubah H2O2 menjadi H2O dan O2. Enzim ini berperan penting dalam meregulasi metabolisme H2O2. Hidrogen peroksida adalah merupakan sebuah molekul kecil hasil samping dari metabolisme. Kelebihan H2O2 akibat defisiensi Katalase, menyebabkan kerusakan yang signifikan pada protein, DNA, RNA dan lipid sehingga hal ini juga berperan pada patogenesis berbagai penyakit, termasuk diabetes. Dalam studi in silico ini, perubahan yang terjadi pada mutasi SNP (single nucleotide polymorphism) C (330) T (rs 10011179) dari gen CAT akan diselidiki, termasuk hubungannya dengan risiko peningkatan resiko diabetes. Untuk itu dilakukan pencarian bioinformasi, diantaranya informasi tentang gen, protein dan penelusuran informasi penting lainnya yang dapat digunakan sebagai informasi pendukung penelitian. Analisis bioinformatika gen CAT dilakukan dengan menggunakan beberapa program open source dari situs web. Pada penelitian ini ternyata terjadi mutasi misssense SNP Ala110Val (C330T, rs1001179) yang ditemukan pada struktur 3D CAT pada urutan asam amino ke-110 (C330T) yang mengganggu fungsi amidasi protein CAT. Mutasi ini menyebabkan berkurangnya ekspresi gen CAT, yang berakibat pada berkurangnya aktivitas CAT sebagai biokatalis dan sebagai enzim antioksidan. Hal ini terkait dengan peningkatan risiko diabetes tipe 1.


Sign in / Sign up

Export Citation Format

Share Document