On the non-monotonic wind influence on flammable gas cloud from CFD simulations for hazardous area classification

2020 ◽  
Vol 68 ◽  
pp. 104278
Author(s):  
Paloma L. Barros ◽  
Aurélio M. Luiz ◽  
Claudemi A. Nascimento ◽  
Antônio T.P. Neto ◽  
José J.N. Alves
Author(s):  
Roger C. Santon ◽  
Matthew J. Ivings ◽  
David K. Pritchard

Dilution ventilation is a widely used means of protection against the risk of explosion within gas turbine acoustic enclosures arising from the leakage and accumulation of flammable gas and its ignition from the turbine. In ASME 98GT-215 a safety criterion was proposed for the design of ventilation by defining the allowable size of flammable gas cloud as a proportion of the enclosure volume. This criterion was theoretically based, with a significant safety factor. Whilst generally viable, it was found to be difficult to achieve in some cases. A research project, described in ASME GT-2002-30469, was launched to define a criterion more accurately and with known conservatism based on a detailed programme of experimental explosions and Computational Fluid Dynamics (CFD) modelling. The $600k project was largely financed by the gas turbine industry, including suppliers and users, and by CFD contractors. The paper describes the project aims, its scope of work, and includes the main results, the new criterion and conclusions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249913
Author(s):  
Sunisa Chaiklieng

Vaporization of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds pollutes the air and causes health hazards at gasoline stations. This study revealed the risk of BTEX exposure according to the hazardous area classification at gasoline stations. The risk assessment of gasoline workers from a representative group of 47 stations, which followed the United States Environmental Protection Agency-IRIS method of assessing BTEX exposure, was expressed as the hazard index (HI). A result of matrix multipliers of the hazardous exposure index and fire possibility from flammable gas classified hazardous area-I and area-II at the fuel dispensers. BTEX concentrations were actively sampled in ambient air and a flammable gas detector was used to measure the flammability level. Results showed that the BTEX concentrations from ambient air monitoring were in the range of 0.1–136.9, 8.1–406.0, 0.8–24.1 and 0.4–105.5 ppb for benzene, toluene, ethylbenzene, and xylene, respectively, which exceeded the NIOSH exposure limit of 100 ppb of benzene concentration. The risk assessment indicated that five stations reached an unacceptable risk of worker exposure to BTEX (HI>1), which correlated with the numbers of gasoline dispensers and daily gasoline sold. The risk matrix classified hazardous area-I at 4 meters and hazardous area-II at 4–8 meters in radius around the fuel dispensers. This study revealed the hazardous areas at gasoline stations and suggests that entrepreneurs must strictly control the safety operation practice of workers, install vapor recovery systems on dispenser nozzles to control BTEX vaporization and keep the hazardous areas clear of fire ignition sources within an eight-meter radius of the dispensers.


2010 ◽  
Vol 184 (1-3) ◽  
pp. 170-176 ◽  
Author(s):  
M.J. Ivings ◽  
S.E. Gant ◽  
C.J. Saunders ◽  
D.J. Pocock

Author(s):  
Q G Zheng ◽  
W Q Wu ◽  
M Song

The engine fuel piping in LNG-fuelled ships’ engine room presents potential gas explosion risks due to possible gas fuel leakage and dispersion. A 3D CFD model with chemical reaction was described, validated and then used to simulate the possible gas dispersion and the consequent explosions in an engine room with regulations commanded ventilations. The results show that, with the given minor leaking of a fuel pipe, no more than 1kg of methane would accumulate in the engine room. The flammable gas clouds only exit in limited region and could lead to explosions with an overpressure about 12 mbar, presenting no injury risk to personnel. With the given major leaking, large region in the engine room would be filled with flammable gas cloud within tens of seconds. The gas cloud might lead to an explosion pressure of about 1 bar or higher, which might result in serious casualties in the engine room.


2019 ◽  
Vol 161 (A3) ◽  

The engine fuel piping in LNG-fuelled ships’ engine room presents potential gas explosion risks due to possible gas fuel leakage and dispersion. A 3D CFD model with chemical reaction was described, validated and then used to simulate the possible gas dispersion and the consequent explosions in an engine room with regulations commanded ventilations. The results show that, with the given minor leaking of a fuel pipe, no more than 1kg of methane would accumulate in the engine room. The flammable gas clouds only exit in limited region and could lead to explosions with an overpressure about 12 mbar, presenting no injury risk to personnel. With the given major leaking, large region in the engine room would be filled with flammable gas cloud within tens of seconds. The gas cloud might lead to an explosion pressure of about 1 bar or higher, which might result in serious casualties in the engine room.


2019 ◽  
Vol 27 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Andrey Oliveira de Souza ◽  
Aurélio Moreira Luiz ◽  
Antônio Tavernard Pereira Neto ◽  
Antônio Carlos Brandao de Araujo ◽  
Heleno Bispo da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document