scholarly journals Risk assessment of workers’ exposure to BTEX and hazardous area classification at gasoline stations

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249913
Author(s):  
Sunisa Chaiklieng

Vaporization of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds pollutes the air and causes health hazards at gasoline stations. This study revealed the risk of BTEX exposure according to the hazardous area classification at gasoline stations. The risk assessment of gasoline workers from a representative group of 47 stations, which followed the United States Environmental Protection Agency-IRIS method of assessing BTEX exposure, was expressed as the hazard index (HI). A result of matrix multipliers of the hazardous exposure index and fire possibility from flammable gas classified hazardous area-I and area-II at the fuel dispensers. BTEX concentrations were actively sampled in ambient air and a flammable gas detector was used to measure the flammability level. Results showed that the BTEX concentrations from ambient air monitoring were in the range of 0.1–136.9, 8.1–406.0, 0.8–24.1 and 0.4–105.5 ppb for benzene, toluene, ethylbenzene, and xylene, respectively, which exceeded the NIOSH exposure limit of 100 ppb of benzene concentration. The risk assessment indicated that five stations reached an unacceptable risk of worker exposure to BTEX (HI>1), which correlated with the numbers of gasoline dispensers and daily gasoline sold. The risk matrix classified hazardous area-I at 4 meters and hazardous area-II at 4–8 meters in radius around the fuel dispensers. This study revealed the hazardous areas at gasoline stations and suggests that entrepreneurs must strictly control the safety operation practice of workers, install vapor recovery systems on dispenser nozzles to control BTEX vaporization and keep the hazardous areas clear of fire ignition sources within an eight-meter radius of the dispensers.

2020 ◽  
Vol 5 (1) ◽  
pp. 166-175
Author(s):  
Fatima Haque ◽  
Yi Wai Chiang ◽  
Rafael M. Santos

AbstractCalcium- and magnesium-rich alkaline silicate minerals, when applied to soil, can aid in carbon dioxide sequestration via enhanced weathering. The weathering of these silicate minerals is also associated with the release of heavy metals such as Ni and Cr, depending on the composition of the parent rock, and also labile Si. This paper critically analyses the risk associated with the release of Ni, Cr, and Si from alkaline silicate minerals as a result of enhanced weathering to evaluate its potential to be applied as a soil amendment. Based on the available data in the literature, this study evaluates the soil contamination level and quantifies the risk these elements pose to human health as well as the environment. To assess these potential threat levels, the geoaccumulation index was applied, along with the method recommended by the US Environmental Protection Agency for health risk assessment. The main findings of this study indicate the potential release of Ni, Cr, and Si to exceed the soil quality guideline value. The geochemical index suggests that the analyzed samples are in the class 0–3 and represents sites that lie between uncontaminated zones to highly contaminated zones. The hazard index value for Ni and Cr is greater than unity, which suggests that Ni and Cr release poses a non-carcinogenic risk. The probability of labile Si concentration in the soil to exceed the critical value is found to be 75%.


2020 ◽  
Vol 36 (12) ◽  
pp. 960-970
Author(s):  
Mohsen Sadeghi-Yarandi ◽  
Ali Karimi ◽  
Vahid Ahmadi ◽  
Ali Asghar Sajedian ◽  
Ahmad Soltanzadeh ◽  
...  

1,3-Butadiene is classified as carcinogenic to humans by inhalation. This study aimed to assess cancer and non-cancer risk following occupational exposure to 1,3-butadiene. This cross-sectional study was conducted in a petrochemical plant producing acrylonitrile butadiene styrene copolymer in Iran. Occupational exposure to 1,3-butadiene was measured according to the National Institute for Occupational Safety and Health 1024 method. Cancer and non-cancer risk assessment were performed according to the United States Environmental Protection Agency method. The average occupational exposure to 1,3-butadiene during work shifts among all participants was 560.82 ± 811.36 µg m−3. The average lifetime cancer risk (LCR) in the present study was 2.71 × 10−3; 82.2% of all exposed workers were within the definite carcinogenic risk level. Also, the mean non-cancer risk (hazard quotient (HQ)) among all participants was 10.82 ± 14.76. The highest LCR and HQ were observed in the safety and fire-fighting station workers with values of 7.75 × 10−3 and 36.57, respectively. The findings revealed that values of carcinogenic and noncarcinogenic risk in the majority of participants were within the definitive and unacceptable risk levels. Therefore, corrective measures are necessary to protect these workers from non-cancer and cancer risks from 1,3-butadiene exposure.


2011 ◽  
Vol 9 (1) ◽  
pp. 169-186 ◽  
Author(s):  
G. Rijal ◽  
J. K. Tolson ◽  
C. Petropoulou ◽  
T. C. Granato ◽  
A. Glymph ◽  
...  

A microbial risk assessment was conducted to estimate the human health risks from incidental contact recreational activities such as canoeing, boating and fishing in the Chicago Area Waterway System (CAWS) receiving secondary treated, but non-disinfected, effluent from three municipal water reclamation plants. Actual concentrations of the pathogens (pathogenic E. coli [estimated], Giardia, Cryptosporidium, adenovirus, norovirus, enteric virus) detected from the waterway field data collection at locations upstream and downstream of the effluent outfall during dry and wet weather conditions within the recreation season were included in the risk assessment. The results under the current treatment scheme with no disinfection indicated that the total expected gastrointestinal illness (GI) rate per 1000 incidental contact recreational exposure events during combined weather (dry and wet) conditions ranged from 0.10 to 2.78 in the CAWS, which is below the eight illnesses per 1000 swimmers considered tolerable by the United States Environmental Protection Agency. Wet weather conditions contribute to elevated pathogen load to the CAWS; therefore this study determined that disinfecting the effluents of three major WRPs that discharge to the CAWS would result in an extremely small reduction in the aggregate recreation season risk to incidental contact recreators.


Author(s):  
A.I. Yaradua ◽  
A. J. Alhassan ◽  
A. Nasir ◽  
S. S. Matazu ◽  
A. Usman ◽  
...  

Vegetable fields in Katsina State are increasingly being loaded with heavy metals through various pollution sources such as agricultural activities mining and traffic. Onion bulb samples from the three senatorial zones that constitute to make up Katsina state in the North West of Nigeria were collected and the concentrations of seven heavy metals (Pb, Cd, Cr, Fe, Zn, Mn and Ni) in all the samples were determined by atomic absorption spectrometry. The health risk assessment methods developed by the United States Environmental Protection Agency (US EPA) were employed to explore the potential health hazards of heavy metals in the samples on the children and adult population. The highest mean concentration (mg/kg) was observed for Fe, followed by Pb, Zn and Mn. While Cd has the lowest concentration with the heavy metals Cr and Ni being below detection level (BDL). Overall hazard index (Hi) for the heavy metals were within the safety limit. The overall cancer risk to the adults based on pseudo-total metal concentrations exceeded the target value, mainly contributed by Pb.  Mn and Zn were the primary heavy metals posing non-cancer risks while Pb caused the greatest cancer risk. It was concluded that consumption of the onion samples from Katsina State may contribute to the population cancer burden.


2021 ◽  
Vol 25 (1) ◽  
pp. 71-77
Author(s):  
Nguyen Thanh Giao ◽  
Phan Kim Anh ◽  
Huynh Thi Hong Nhien

The study was conducted to assess the health risks of workers due to exposure to toxic gases including benzene, toluene, ethylbenzene, m, p-xylene, o-xylene, formaldehyde and acetaldehyde at gasoline retail stations. In this study, data on the  concentrations of the toxic gases were collected from the previously published studies in the qualified scientific journals. The health risk assessment was followed by the process of the United States Environment Protection Agency (U.S. EPA). The results show that the concentrations of benzene, toluene, ethylbenzene, m, p-xylene, o-xylene, formaldehyde, and acetaldehyde were in the range of 12.40 - 357.5, 12.47 - 574.17, 2.05 - 156.5, 4.57 - 218, 2.36 - 77.04, 3.64 - 153.93 and 1.27- 27.83 µg/m3 , respectively. Life time cancer risk for gasoline station workers due to exposure to benzene, ethylbenzene, formaldehyde, and acetaldehyde was calculated in the ranges of 2.13x10-5 - 6.14x10-4 , 4.96x10-7 - 3.79x10-5 , 4.81x10-6 - 2.03x10-4 , and 7.99x10-7 - 1.75x10-5 , respectively. For non-carcinogenic  compounds, the hazard index due to benzene, toluene, m, p-xylene, o-xylene were respectively in the range of 0.13 - 3.81, 7.97x10-4 -  0.04, 0.01 - 0.70 and 0.01 - 0.25. The findings revealed that there is high risk of cancer and non-cancer for the workers working at the gasolines stations if they are not taking good preventive measures. The calculation showed that the limit levels of benzene, toluene, ethylbenzene, xylene, formaldehyde and acetaldehyde should be reduced to 5.82x10-4 , 15.64, 4.13x10- 3 , 0.31, 7.57x10-4 and 1.59x10-3 mg/m3 , respectively to meet the safety levels for the workers at the gasoline stations. Keywords: benzene, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, life-time cancer risk, health


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12487
Author(s):  
Osikemekha Anthony Anani ◽  
John Ovie Olomukoro

Water plays a major role in supporting the wellness and life processes in living things as well as in the ecological structure’s stabilities. However, several environmental scientists have recounted the alarming menace unfit water quality portends as well as the shortfalls of its global utilization in various spheres of life. This study aims to determine the fitness of the Ossiomo River and its likely health risk impact when consumed or used for other domestic purposes. The outcome of the physicochemical and heavy metal characterization showed that most of the parameters surpassed the slated benchmarks. Findings from the study revealed a significant difference (p < 0.05) for water temperature, color, TDS, BOD5, HCO3, Na, Fe, Mn, and THC across the four stations respectively. Meanwhile, pH, salinity, turbidity, TSS, DO, Cl, P, NH4H, NO2, NO3, SO4, Zn, Cu, Cr, Ni, Pb, and V showed no significant (p > 0.05) across the four stations respectively. The pH level of the water was slightly acidic at the range of 4.40–6.82. The outcome of the computed water quality index showed that station 1 (66.38) was poor for human ingestion which was above the set slated benchmarks of 26–50. However, stations 2–4 (163.79, 161.79, and 129.95) were unsuitable for drinking which was above the set slated benchmarks of 100. The outcome of the health risk evaluation revealed that the hazard quotients (HQs) were considered greater than 1 (>1) for Cr (2.55). The hazard index (0.46) via the dermal pathway was <1 while the ingestion (4.35) pathway was >1. The sum of the HQs (4.81) was also > 1. Thus, there are possible non-carcinogenic health risks via direct ingestion of the water. The outcome from the carcinogenic risk for Pb, Cr, and Cd (6 × 10–3, 4.00 × 10–1, and 1.22 × 100), was somewhat greater than the target goal (1.0 × 10–6 to 1.0 × 10–4) of carcinogenic risks stipulated by the United States Environmental Protection Agency for drinking water, respectively, especially for Cd. There might be a potential carcinogenic risk if the water is consumed when the metal contents are higher than the target limits set. Sustainable farming and treatment of wastes from industrial outputs should be the main management of this watercourse.


2007 ◽  
Vol 16 (1) ◽  
Author(s):  
J Cookson' ◽  
A Royall ◽  
R Diab ◽  
M Binedell

A previous study by Muller et al. (2003) investigated NOx, benzene, toluene, ethylbenzene and xylene levels in households in the densely settled informal settlement of Cato Crest located within the Durban Metropolitan area. AHealth Risk Assessment based on the United States EPA approach showed that the residents of Cato Crest experienced significant health risks as a result of exposure to these pollutants largely as a result of kerosene usage in their homes. Specifically, the study which was conducted in September 2000 in 14 households, showed that exposure to NOx over a 24-hour period indicated a potential health risk in all the households, that benzene poses a health risk in 50% of the households, whereas there is no health risk associated with exposure to toluene. A follow-up study was conducted in July 2006 targeting similar households and pollutants to investigate whether comparable results were found in a typical winter period, when air quality is generally expected to deteriorate.


Author(s):  
Rajiv Ganguly

Rapid urbanization and globalization has led to severe degradation of existing air quality in the majority of Indian cities. In this context, the general public has been aware of their exposure to ambient air quality and the effects of such air pollutants on human health. Hence, the concept of Air quality indices (AQI) is often used by regulatory authorities in conveying the status of existing ambient air quality to the general public. The chapter presents the application of air quality indices for assessing the existing air quality standards in an Indian city, Dharamshala, a tourist location in Himachal Pradesh, for the period of 2016-2017. Two different methods of determining AQI have been used wherein one method is used as the revised Central Pollution Control Board (CPCB), India with different sub-indices for Indian conditions based on the United States Environmental Protection Agency (USEPA) methodology and another alternative method utilizes contribution from all criteria pollutants.


Sign in / Sign up

Export Citation Format

Share Document