Nd3+-doped TiO2 nanocrystals: Structural changes, excited-state dynamics, and luminescence defects

2021 ◽  
Vol 240 ◽  
pp. 118461
Author(s):  
Jhenifer N.L. Lopes ◽  
José C.S. Filho ◽  
Djalmir N. Messias ◽  
Viviane Pilla ◽  
Noelio O. Dantas ◽  
...  
Small ◽  
2011 ◽  
Vol 7 (21) ◽  
pp. 3046-3056 ◽  
Author(s):  
Wenqin Luo ◽  
Chengyu Fu ◽  
Renfu Li ◽  
Yongsheng Liu ◽  
Haomiao Zhu ◽  
...  

2021 ◽  
Author(s):  
Young Mo Sung ◽  
Eun Suk Kwon ◽  
Yusuke Makida Maruyama ◽  
Youngsik Shin ◽  
Soo-Ghang Ihn ◽  
...  

Abstract Intramolecular charge transfer (ICT) plays a critical role in determining the photophysical properties of organic molecules, including their luminescence efficiencies. Twisted intramolecular charge transfer (TICT) is a process in which structural change accompanies ICT. Despite significant research, the relationship between TICT and solvent polarity, and its effects on photophysical properties, have been rarely investigated. Herein, we used time-resolved spectroscopy to study TICT in pyrene derivatives that are promising blue organic light emitting diode (OLED) emitter candidates; these derivatives show strong solvent-dependent charge-transfer (CT) behavior. Slight structural changes that do not affect excited state dynamics were observed in nonpolar solvents, while polar solvents were found to affect excited state dynamics and CT characteristics. The TICT behavior of these pyrene derivatives could be modulated through structural modification. Our study provides valuable guidelines for the control of optical properties, including the luminescence efficiencies of OLED emitters that show TICT characteristics.


2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


2019 ◽  
Author(s):  
Gergely Samu ◽  
R.A. Scheidt ◽  
A. Balog ◽  
C. Janáky ◽  
P.V. Kamat

2006 ◽  
Vol 110 (40) ◽  
pp. 11435-11439 ◽  
Author(s):  
Grzegorz M. Balkowski ◽  
Michiel Groeneveld ◽  
Hong Zhang ◽  
Cindy C. J. Hendrikx ◽  
Michael Polhuis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document