scholarly journals A note on well-posedness of semilinear reaction–diffusion problem with singular initial data

2012 ◽  
Vol 385 (1) ◽  
pp. 105-110 ◽  
Author(s):  
James C. Robinson ◽  
Mikołaj Sierżęga
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Aníbal Rodríguez-Bernal ◽  
Silvia Sastre-Gómez

<p style='text-indent:20px;'>In this paper we analyse the asymptotic behaviour of some nonlocal diffusion problems with local reaction term in general metric measure spaces. We find certain classes of nonlinear terms, including logistic type terms, for which solutions are globally defined with initial data in Lebesgue spaces. We prove solutions satisfy maximum and comparison principles and give sign conditions to ensure global asymptotic bounds for large times. We also prove that these problems possess extremal ordered equilibria and solutions, asymptotically, enter in between these equilibria. Finally we give conditions for a unique positive stationary solution that is globally asymptotically stable for nonnegative initial data. A detailed analysis is performed for logistic type nonlinearities. As the model we consider here lack of smoothing effect, important focus is payed along the whole paper on differences in the results with respect to problems with local diffusion, like the Laplacian operator.</p>


2019 ◽  
Vol 21 (06) ◽  
pp. 1850033
Author(s):  
Arlúcio Viana

In this paper, we study the local well-posedness for the Cauchy problem of a semilinear fractional diffusion equation where the perturbations behave like [Formula: see text] and [Formula: see text], and [Formula: see text] is the characteristic function of a ball [Formula: see text]. Here, we are interested in the solvability of the problem when singular initial data [Formula: see text] are taken in [Formula: see text]. Eventually, we give sufficient conditions to the nonexistence of positive global solutions.


2021 ◽  
Vol 38 (1) ◽  
pp. 95-116
Author(s):  
MITROFAN M. CHOBAN ◽  
◽  
COSTICĂ N. MOROȘANU ◽  

The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of bounday conditions already studied. Under certain assumptions on the input data: $f_{_1}(t,x)$, $w(t,x)$ and $u_0(x)$, we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space $W^{1,2}_p(Q)$. This extends previous works concerned with nonlinear dynamic boundary conditions, allowing to the present mathematical model to better approximate the real physical phenomena (the anisotropy effects, phase change in $\Omega$ and at the boundary $\partial\Omega$, etc.).


2020 ◽  
Vol 28 (3) ◽  
pp. 147-160
Author(s):  
Andrea Bonito ◽  
Diane Guignard ◽  
Ashley R. Zhang

AbstractWe consider the numerical approximation of the spectral fractional diffusion problem based on the so called Balakrishnan representation. The latter consists of an improper integral approximated via quadratures. At each quadrature point, a reaction–diffusion problem must be approximated and is the method bottle neck. In this work, we propose to reduce the computational cost using a reduced basis strategy allowing for a fast evaluation of the reaction–diffusion problems. The reduced basis does not depend on the fractional power s for 0 < smin ⩽ s ⩽ smax < 1. It is built offline once for all and used online irrespectively of the fractional power. We analyze the reduced basis strategy and show its exponential convergence. The analytical results are illustrated with insightful numerical experiments.


2016 ◽  
Vol 16 (4) ◽  
pp. 609-631 ◽  
Author(s):  
Immanuel Anjam ◽  
Dirk Pauly

AbstractThe results of this contribution are derived in the framework of functional type a posteriori error estimates. The error is measured in a combined norm which takes into account both the primal and dual variables denoted by x and y, respectively. Our first main result is an error equality for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+x=f}$ or in mixed formulation ${\mathrm{A}^{*}y+x=f}$, ${\mathrm{A}x=y}$, where the exact solution $(x,y)$ is in $D(\mathrm{A})\times D(\mathrm{A}^{*})$. Here ${\mathrm{A}}$ is a linear, densely defined and closed (usually a differential) operator and ${\mathrm{A}^{*}}$ its adjoint. In this paper we deal with very conforming mixed approximations, i.e., we assume that the approximation ${(\tilde{x},\tilde{y})}$ belongs to ${D(\mathrm{A})\times D(\mathrm{A}^{*})}$. In order to obtain the exact global error value of this approximation one only needs the problem data and the mixed approximation itself, i.e., we have the equality$\lvert x-\tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-% \tilde{y}\rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}=\mathcal{M}(% \tilde{x},\tilde{y}),$where ${\mathcal{M}(\tilde{x},\tilde{y}):=\lvert f-\tilde{x}-\mathrm{A}^{*}\tilde{y}% \rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. Our second main result is an error estimate for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+ix=f}$ or in mixed formulation ${\mathrm{A}^{*}y+ix=f}$, ${\mathrm{A}x=y}$, where i is the imaginary unit. For this problem we have the two-sided estimate$\frac{\sqrt{2}}{\sqrt{2}+1}\mathcal{M}_{i}(\tilde{x},\tilde{y})\leq\lvert x-% \tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-\tilde{y}% \rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}\leq\frac{\sqrt{2}}{% \sqrt{2}-1}\mathcal{M}_{i}(\tilde{x},\tilde{y}),$where ${\mathcal{M}_{i}(\tilde{x},\tilde{y}):=\lvert f-i\tilde{x}-\mathrm{A}^{*}% \tilde{y}\rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. We will point out a motivation for the study of the latter problems by time discretizations or time-harmonic ansatz of linear partial differential equations and we will present an extensive list of applications including the reaction-diffusion problem and the eddy current problem.


Sign in / Sign up

Export Citation Format

Share Document