Uniqueness of Nash equilibrium in continuous two-player weighted potential games

2018 ◽  
Vol 459 (2) ◽  
pp. 1208-1221 ◽  
Author(s):  
Francesco Caruso ◽  
Maria Carmela Ceparano ◽  
Jacqueline Morgan
2014 ◽  
Vol 9 (3) ◽  
pp. 555-582 ◽  
Author(s):  
Oriol Carbonell-Nicolau ◽  
Richard P. McLean

Author(s):  
João P. Hespanha

This chapter discusses several classes of potential games that are common in the literature and how to derive the Nash equilibrium for such games. It first considers identical interests games and dummy games before turning to decoupled games and bilateral symmetric games. It then describes congestion games, in which all players are equal, in the sense that the cost associated with each resource only depends on the total number of players using that resource and not on which players use it. It also presents other potential games, including the Sudoku puzzle, and goes on to analyze the distributed resource allocation problem, the computation of Nash equilibria for potential games, and fictitious play. It concludes with practice exercises and their corresponding solutions, along with additional exercises.


2020 ◽  
Vol 23 (07) ◽  
pp. 2050043
Author(s):  
MAXIM BICHUCH ◽  
KE CHEN

In a crisis, when faced with insolvency, banks can sell stock in a dilutive offering in the stock market and borrow money in order to raise funds. We propose a simple model to find the maximum amount of new funds the banks can raise in these ways. To do this, we incorporate market confidence of the bank together with market confidence of all the other banks in the system into the overnight borrowing rate. Additionally, for a given cash shortfall, we find the optimal mix of borrowing and stock selling strategy. We show the existence and uniqueness of Nash equilibrium point for all these problems. Finally, using this model we investigate if banks have become safer since the crisis. We calibrate this model with market data and conduct an empirical study to assess safety of the financial system before, during after the last financial crisis.


Author(s):  
U. Tejasvi ◽  
R. D. Eithiraj ◽  
S. Balakrishnan

Problems can be handled properly in game theory as long as a countable number of players are considered, whereas, in real life, we have a large number of players. Hence, games at the thermodynamic limit are analyzed in general. There is a one-to-one correspondence between classical games and the modeled Hamiltonian at a particular equilibrium condition, usually the Nash equilibrium. Such a correspondence is arrived for symmetric games, namely the Prisoner’s Dilemma using the Ising Hamiltonian. In this work, we have shown that another class of games known as potential games can be analyzed with the Ising Hamiltonian. Analysis of this work brings out very close observation with real-world scenarios. In other words, the model of a potential game studied using Ising Hamiltonian predicts behavioral aspects of a large population precisely.


Sign in / Sign up

Export Citation Format

Share Document