scholarly journals Seasonal and spatial distribution of particulate organic matter in the Bay of Bengal

2009 ◽  
Vol 77 (1-2) ◽  
pp. 137-147 ◽  
Author(s):  
Loreta Fernandes ◽  
Narayan B. Bhosle ◽  
S.G. Prabhu Matondkar ◽  
Ravi Bhushan
2005 ◽  
Vol 52 (24-26) ◽  
pp. 3324-3343 ◽  
Author(s):  
Nicholas R. Bates ◽  
Dennis A. Hansell ◽  
S. Bradley Moran ◽  
Louis A. Codispoti

2020 ◽  
Vol 653 ◽  
pp. 41-55 ◽  
Author(s):  
D Sahoo ◽  
H Saxena ◽  
N Tripathi ◽  
MA Khan ◽  
A Rahman ◽  
...  

Nitrogen (N) and phosphorus (P) determine the strength of the ocean’s biological carbon (C) pump, and variation in the N:P ratio is key to phytoplankton growth. A fixed C:N:P ratio (106:16:1) in organic matter and deep-water nutrients was observed by Alfred C. Redfield. However, recent studies have challenged the concept of the Redfield Ratio, and its veracity remains to be examined in oceanic basins like the Bay of Bengal. For this purpose, we sampled the water in the Bay of Bengal for C, N, and P content in the organic and inorganic pools from the surface to 2000 m. Overall, the C:N:P ratio deviated greatly from the Redfield Ratio. The C:N:P ratio in particulate organic matter varied from 232:25:1 in the top layer (surface to the depth of the chlorophyll maximum) to 966:72:1 in the deep water (300-2000 m). In dissolved organic matter, the ratio varied from 357:30:1 in the top layer to 245:66:1 in the deep water. The N:P ratio in nutrients varied from 3 in the top layer to 12 in the deep water. The nutrient-depleted top layer (average NO3- + NO2- ~ 0.7 µmol l-1) with a low N:P ratio coupled with reported low primary production rates in the Bay suggested that the production was N limited. Concurrent N2 fixation rates were not sufficient to alter the observed C:N:P ratio. Eddies showed a mixed effect on the C:N:P ratio. Our C:N:P ratios in particulate organic matter are comparable to other tropical basins and supports the nutrient supply hypothesis for low latitude ecosystems.


2005 ◽  
Vol 96 (1-2) ◽  
pp. 155-184 ◽  
Author(s):  
Daniela Unger ◽  
Venugopalan Ittekkot ◽  
Petra Schäfer ◽  
Jörg Tiemann

Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


Sign in / Sign up

Export Citation Format

Share Document