Relating particulate organic matter-nitrogen (POM-N) and non-POM-N with pulse crop residues, residue management and cereal N uptake

Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples
2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 346
Author(s):  
K. L. Page ◽  
R. C. Dalal ◽  
S. H. Reeves ◽  
W. J. Wang ◽  
Somasundaram Jayaraman ◽  
...  

No-till (NT) farming has been widely adopted to assist in reducing erosion, lowering fuel costs, conserving soil moisture and improving soil physical, chemical and biological characteristics. Improvements in soil characteristics are often driven by the greater soil organic matter accumulation (as measured by soil organic carbon (SOC)) in NT compared to conventional tillage (CT) farming systems. However, to fully understand the effect of NT it is important to understand temporal changes in SOC by monitoring over an extended period. We investigated the long-term effect of NT and stubble retention (SR) on changes in SOC and total soil nitrogen (STN) using results from an experiment that has been running for 50 years in a semi-arid subtropical region of north-eastern Australia. In this experiment, the effects of tillage (CT vs NT), residue management (stubble burning (SB) vs SR), and nitrogen (N) fertiliser (0 and 90 kg-N ha–1) were measured in a balanced factorial experiment on a Vertisol (Ustic Pellusert). The use of NT, SR and N fertiliser generally improved SOC (by up to 12.8%) and STN stocks (by up to 31.7%) in the 0–0.1 m layer relative to CT, SB and no N fertiliser, with the greatest stocks observed where all three treatments were used in combination. However, declines in SOC (up to 20%) and STN (up to 25%) occurred in all treatments over the course of the experiment, indicating that changes in management practices were unable to prevent a loss of soil organic matter over time in this farming system. However, the NT and SR treatments did lose less SOC than CT and SB treatments, and SR also reduced STN loss. The δ13C analysis of samples collected in 2008 and 2015 highlighted that crop residues have significantly contributed to SOC stocks at the site and that their contribution is increasing over time.


2021 ◽  
Author(s):  
Carlos Romero ◽  
Xiying Hao ◽  
Paul Hazendonk ◽  
Timothy Schwinghamer ◽  
Martin Chantigny ◽  
...  

<p>Managing croplands for increased storage of soil organic matter (SOM) is a critical step towards developing resilient farming systems in a changing climate. We examined SOM dynamics in a wheat (Triticum durum L.) – maize (Zea mays L.) irrigated bed planting system established near Ciudad Obregón, Sonora, Mexico. Soil samples (0 – 15 cm) were collected from conventionally tilled raised beds (CTB) with all crop residues incorporated (CTB-I) and permanent raised beds (PB) with crop residues burned (PB-B), removed (PB-R), partly retained (PB-P) or fully retained (PB-K) receiving 0, 150 or 300 kg N ha<sup>-1</sup>, and analyzed for organic C (OC), total N (TN) and δ<sup>13</sup>C in whole-soil, light fraction (LF) and coarse- (sand) and fine- (silt and clay) mineral-associated organic matter (MAOM). Results indicated that PB-K and PB-B increased soil OC (P < 0.05) in whole-soil relative to CTB-I, mainly through increases in sand- and silt-size MAOM, respectively. Similarly, N-fertilization increased soil OC and TN contents in whole-soil, coarse-MAOM, and fine-MAOM, but not in the LF pool. Soil δ<sup>13</sup>C was higher (P < 0.05) in PB-K (-20.18‰) relative to PB-B (-20.67‰), possibly due to the stabilization of partly decomposed maize-C in silt- and clay-size MAOM. The composition of SOM surveyed by CPMAS <sup>13</sup>C NMR was not affected by tillage-residue management and roughly consisted of 35% O-alkyl-C, 31% alkyl-C, 24% aromatic-C, and 10% carboxyl-C. Our results indicate that long-term PB-K and PB-B adoption increased surface soil OC contents relative to CTB-I, even though pathways of SOM stabilization differed between systems. Under PB-K, accumulation of fine-MAOM was mostly related to straw-C inputs, whereas in PB-B it was closely associated with black-C precursors. Fine-MAOM appeared responsive to crop residue management and should be therefore considered when analyzing mechanisms of SOM stabilization in irrigated croplands.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.5f4bda4b7cff54512830161/sdaolpUECMynit/12UGE&app=m&a=0&c=e41c23ac3d107ae401152ab2ecf4553d&ct=x&pn=gepj.elif&d=1" alt=""></p>


1999 ◽  
Vol 79 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Y. K. Soon

Cereal straw has many potential on-farm and off-farm uses. If straw is to be removed from land, the practice should not adversely impact long-term crop production and soil quality. A 10-yr experiment was conducted on a Dark Grey Solod near Beaverlodge, Alberta (55°13′N, 119°20′W) to determine the effects of fertilizer and straw management on the yield of, and nutrient (N and P) use by, continuous barley (Hordeum vulgare L.). Four straw management treatments: (i) straw removal; (ii) straw ploughed in; (iii) straw disked in; and (iv) straw disked in plus a red clover (Trifoleum pratense L.) green manure disked in every fifth year, were superimposed on four fertilizer treatments. The fertilizer treatments were application of N and P: (i) banded at soil-test recommended rates (ST,b); (ii) broadcast and incorporated at soil-test recommended rates (ST,bi); (iii) banded at soil-test rates of N+ 25 kg ha−1 and P+ 10 kg ha−1 (ST+,b); and (iv) as in (iii) but broadcast-applied and incorporated (ST+,bi). The straw ploughed-in treatment tended to produce lower annual barley yield and N uptake (by 9 and 13%, respectively) than the other three residue treatments. Barley yield and utilization of N and P were unaffected by straw removal as compared to disking-in straw. Barley yield and N uptake were higher (by 12 and 17%, respectively) with N and P application at the higher rate. At the recommended rate, broadcast-and-incorporated application of fertilizers resulted in lower yields and nutrient use than banded-in application. Treatment effects on P uptake tended to be small. The green-manured treatment used less fertilizer N, resulted in less total barley grain production, and did not increase the amount of crop residues incorporated. It is concluded that grain yield and nutrient (N and P) use of a continuous barley cropping system, fertilized at recommended rates of N and P, were unaffected by straw removal. Key words: Crop residue management, continuous barley production, fertilizer N and P


2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 179-188 ◽  
Author(s):  
K. F. Janning ◽  
X. Le Tallec ◽  
P. Harremoës

Hydrolysis and degradation of particulate organic matter has been isolated and investigated in laboratory scale and pilot scale biofilters. Wastewater was supplied to biofilm reactors in order to accumulate particulates from wastewater in the filter. When synthetic wastewater with no organic matter was supplied to the reactors, hydrolysis of the particulates was the only process occurring. Results from the laboratory scale experiments under aerobic conditions with pre-settled wastewater show that the initial removal rate is high: rV, O2 = 2.1 kg O2/(m3 d) though fast declining towards a much slower rate. A mass balance of carbon (TOC/TIC) shows that only 10% of the accumulated TOC was transformed to TIC during the 12 hour long experiment. The pilot scale hydrolysis experiment was performed in a new type of biofilm reactor - the B2A® biofilter that is characterised by a series of decreasing sized granular media (80-2.5 mm). When hydrolysis experiments were performed on the anoxic pilot biofilter with pre-screened wastewater particulates as carbon source, a rapid (rV, NO3=0.7 kg NO3-N/(m3 d)) and a slowler (rV, NO3 = 0.3 kg NO3-N/(m3 d)) removal rate were observed at an oxygen concentration of 3.5 mg O2/l. It was found that the pilot biofilter could retain significant amounts of particulate organic matter, reducing the porosity of the filter media of an average from 0.35 to 0.11. A mass balance of carbon shows that up to 40% of the total incoming TOC accumulates in the filter at high flow rates. Only up to 15% of the accumulated TOC was transformed to TIC during the 24 hour long experiment.


2019 ◽  
Author(s):  
Marisa Repasch ◽  
◽  
Joel Scheingross ◽  
Joel Scheingross ◽  
Carolin Zakrzewski ◽  
...  

2019 ◽  
Vol 135 ◽  
pp. 396-406 ◽  
Author(s):  
Bryony E.A. Dignam ◽  
Maureen O'Callaghan ◽  
Leo M. Condron ◽  
Jos M. Raaijmakers ◽  
George A. Kowalchuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document