Non-Redfieldian C:N:P ratio in the inorganic and organic pools of the Bay of Bengal during the summer monsoon

2020 ◽  
Vol 653 ◽  
pp. 41-55 ◽  
Author(s):  
D Sahoo ◽  
H Saxena ◽  
N Tripathi ◽  
MA Khan ◽  
A Rahman ◽  
...  

Nitrogen (N) and phosphorus (P) determine the strength of the ocean’s biological carbon (C) pump, and variation in the N:P ratio is key to phytoplankton growth. A fixed C:N:P ratio (106:16:1) in organic matter and deep-water nutrients was observed by Alfred C. Redfield. However, recent studies have challenged the concept of the Redfield Ratio, and its veracity remains to be examined in oceanic basins like the Bay of Bengal. For this purpose, we sampled the water in the Bay of Bengal for C, N, and P content in the organic and inorganic pools from the surface to 2000 m. Overall, the C:N:P ratio deviated greatly from the Redfield Ratio. The C:N:P ratio in particulate organic matter varied from 232:25:1 in the top layer (surface to the depth of the chlorophyll maximum) to 966:72:1 in the deep water (300-2000 m). In dissolved organic matter, the ratio varied from 357:30:1 in the top layer to 245:66:1 in the deep water. The N:P ratio in nutrients varied from 3 in the top layer to 12 in the deep water. The nutrient-depleted top layer (average NO3- + NO2- ~ 0.7 µmol l-1) with a low N:P ratio coupled with reported low primary production rates in the Bay suggested that the production was N limited. Concurrent N2 fixation rates were not sufficient to alter the observed C:N:P ratio. Eddies showed a mixed effect on the C:N:P ratio. Our C:N:P ratios in particulate organic matter are comparable to other tropical basins and supports the nutrient supply hypothesis for low latitude ecosystems.

2009 ◽  
Vol 77 (1-2) ◽  
pp. 137-147 ◽  
Author(s):  
Loreta Fernandes ◽  
Narayan B. Bhosle ◽  
S.G. Prabhu Matondkar ◽  
Ravi Bhushan

2005 ◽  
Vol 96 (1-2) ◽  
pp. 155-184 ◽  
Author(s):  
Daniela Unger ◽  
Venugopalan Ittekkot ◽  
Petra Schäfer ◽  
Jörg Tiemann

2021 ◽  
Author(s):  
Deepika Sahoo ◽  
Himanshu Saxena ◽  
Sipai Nazirahmed ◽  
Sanjeev Kumar ◽  
Athiyarath Sudheer ◽  
...  

<p>Bioavailable nitrogen (N) and phosphorus (P) determine the strength of the ocean’s carbon (C) uptake and variation in their ratio (N:P) is key to phytoplankton growth. A similarity between C:N:P ratio (106:16:1) in plankton and deep-water inorganic nutrients was observed by Alfred C. Redfield, who suggested that biological processes in the surface ocean controlled deep ocean chemistry. Recent studies suggest that the ratio varies geographically. The veracity in C:N:P ratio could be attributed to the characteristic physical and biogeochemical processes, which play an important role in regulating the elemental dynamics in ocean. Basins like the northern Indian Ocean due to its geographic setting and monsoonal wind forcing provide a natural laboratory to explore the role of environmental factors, physical and biogeochemical processes on C:N:P stoichiometry.</p><p>We sampled the Bay of Bengal for its C, N, and P contents in the organic and inorganic pool from surface to 2000 m at 8 stations (5 coastal, 3 open ocean) during spring 2019. Mesoscale anticyclonic eddies were identified in our sampling area, which were associated with low nutrient concentrations in the photic depth. Mean (NO<sub>3</sub><sup>- </sup>+ NO<sub>2</sub><sup>-</sup>):PO<sub>4</sub><sup>3-</sup> ratio was 0.6 at eddy and 4.7 at non eddy stations. On the other hand, C:N:P in the organic matter was same at eddy and non-eddy locations. Mean C:N:P ratio in particulate organic matter was 254:39:1 and 244:37:1 in the photic depth of the coastal and open ocean stations, respectively. Biological N<sub>2</sub> fixation contributed ~0.1-0.4% to the N:P ratio of export flux, which ultimately contributes to the (NO<sub>3</sub><sup>- </sup>+ NO<sub>2</sub><sup>-</sup>):PO<sub>4</sub><sup>3-</sup> ratio in subsurface waters. Our results highlight the importance of physical and biological processes in changing elemental stoichiometry.</p>


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 179-188 ◽  
Author(s):  
K. F. Janning ◽  
X. Le Tallec ◽  
P. Harremoës

Hydrolysis and degradation of particulate organic matter has been isolated and investigated in laboratory scale and pilot scale biofilters. Wastewater was supplied to biofilm reactors in order to accumulate particulates from wastewater in the filter. When synthetic wastewater with no organic matter was supplied to the reactors, hydrolysis of the particulates was the only process occurring. Results from the laboratory scale experiments under aerobic conditions with pre-settled wastewater show that the initial removal rate is high: rV, O2 = 2.1 kg O2/(m3 d) though fast declining towards a much slower rate. A mass balance of carbon (TOC/TIC) shows that only 10% of the accumulated TOC was transformed to TIC during the 12 hour long experiment. The pilot scale hydrolysis experiment was performed in a new type of biofilm reactor - the B2A® biofilter that is characterised by a series of decreasing sized granular media (80-2.5 mm). When hydrolysis experiments were performed on the anoxic pilot biofilter with pre-screened wastewater particulates as carbon source, a rapid (rV, NO3=0.7 kg NO3-N/(m3 d)) and a slowler (rV, NO3 = 0.3 kg NO3-N/(m3 d)) removal rate were observed at an oxygen concentration of 3.5 mg O2/l. It was found that the pilot biofilter could retain significant amounts of particulate organic matter, reducing the porosity of the filter media of an average from 0.35 to 0.11. A mass balance of carbon shows that up to 40% of the total incoming TOC accumulates in the filter at high flow rates. Only up to 15% of the accumulated TOC was transformed to TIC during the 24 hour long experiment.


Sign in / Sign up

Export Citation Format

Share Document