scholarly journals An analysis on half century morphological changes in the Changjiang Estuary: Spatial variability under natural processes and human intervention

2018 ◽  
Vol 181 ◽  
pp. 25-36 ◽  
Author(s):  
Jie Zhao ◽  
Leicheng Guo ◽  
Qing He ◽  
Zheng Bing Wang ◽  
D.S. van Maren ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariusz Sojka ◽  
Adam Choiński ◽  
Mariusz Ptak ◽  
Marcin Siepak

AbstractThe objective of this study was to analyse spatial variability of the trace elements (TEs) and rare earth elements (REEs) concentration in lake bottom sediments in Bory Tucholskie National Park (BTNP); Poland. The following research questions were posed: which factors have a fundamental impact on the concentration and spatial variability of elements in bottom sediments, which of the elements can be considered as indicators of natural processes and which are related to anthropogenic sources. The research material was sediments samples collected from 19 lakes. The concentrations of 24 TEs and 14 REEs were determined. The analyses were carried out using the inductively coupled plasma mass spectrometry (ICP-QQQ). Cluster analysis and principal component analysis were used to determine the spatial variability of the TEs and REEs concentrations, indicate the elements that are the indicators of natural processes and identify potential anthropogenic sources of pollution. The geochemical background value (GBV) calculations were made using 13 different statistical methods. However, the contamination of bottom sediments was evaluated by means of the index of geo-accumulation, the enrichment factor, the pollution load index, and the metal pollution index. The BTNP area is unique because of its isolation from the inflow of pollutants from anthropogenic sources and a very stable land use structure over the last 200 years. This study shows high variability of TE and REE concentrations in lake sediments. The values of geochemical indices suggest low pollution of lakes bottom sediments. It was found that TEs originated mainly from geogenic sources. However, the concentrations of Li, Ni, Sc, Se, Be, Se, Ag, Re, Tl, Cd, Sb and U may be related to the impact of point sources found mainly in the Ostrowite Lake. Almost all REEs concentrations were strongly correlated and their presence was linked to with geochemical processes. The elements allowing to identify natural processes and anthropogenic pollution sources were Cr, Co, Cu, Ag, Cd, Zn, Bi, Re, Ba, Al and Rb in TEs group and Nd, Gd, Yb, Lu, Eu, Dy and Ce in REEs group. The analysis shows high spatial variability of TE and REE concentrations in lake sediments. The values of geochemical indices point to low pollution of lakes sediments. The anthropogenic sources only for two lakes had an impact on concentrations of selected TEs and REEs. The analyses allowed to identify elements among TEs and REEs documenting geochemical processes and those indicating anthropogenic sources of pollution.


2015 ◽  
Vol 12 (18) ◽  
pp. 5495-5514 ◽  
Author(s):  
X.-H. Guo ◽  
W.-D. Zhai ◽  
M.-H. Dai ◽  
C. Zhang ◽  
Y. Bai ◽  
...  

Abstract. This study reports the most comprehensive data set thus far of surface seawater pCO2 (partial pressure of CO2) and the associated air–sea CO2 fluxes in a major ocean margin, the East China Sea (ECS), based on 24 surveys conducted in 2006 to 2011. We showed highly dynamic spatial variability in sea surface pCO2 in the ECS except in winter, when it ranged across a narrow band of 330 to 360 μatm. We categorized the ECS into five different domains featuring with different physics and biogeochemistry to better characterize the seasonality of the pCO2 dynamics and to better constrain the CO2 flux. The five domains are (I) the outer Changjiang estuary and Changjiang plume, (II) the Zhejiang–Fujian coast, (III) the northern ECS shelf, (IV) the middle ECS shelf, and (V) the southern ECS shelf. In spring and summer, pCO2 off the Changjiang estuary was as low as < 100 μatm, while it was up to > 400 μatm in autumn. pCO2 along the Zhejiang–Fujian coast was low in spring, summer and winter (300 to 350 μatm) but was relatively high in autumn (> 350 μatm). On the northern ECS shelf, pCO2 in summer and autumn was > 340 μatm in most areas, higher than in winter and spring. On the middle and southern ECS shelf, pCO2 in summer ranged from 380 to 400 μatm, which was higher than in other seasons (< 350 μatm). The area-weighted CO2 flux on the entire ECS shelf was −10.0 ± 2.0 in winter, −11.7 ± 3.6 in spring, −3.5 ± 4.6 in summer and −2.3 ± 3.1 mmol m−2 d−1 in autumn. It is important to note that the standard deviations in these flux ranges mostly reflect the spatial variation in pCO2 rather than the bulk uncertainty. Nevertheless, on an annual basis, the average CO2 influx into the entire ECS shelf was 6.9 ± 4.0 mmol m−2 d−1, about twice the global average in ocean margins.


2017 ◽  
Author(s):  
Dong-Mei Wu ◽  
Jian-Xin Wang ◽  
Xiao-Hui Liu ◽  
Ying-Ping Fan ◽  
Ran Jiang ◽  
...  

The objective of this study was to characterize the structure and function of microbial communities in surface seawater from the Changjiang Estuary and adjacent areas, China. Sample water was collected at 12 sites and environmental parameters were measured. Community structure was analyzed using high-throughput sequencing of 16S rDNA genes. Predictive metagenomic approach was used to predict the function of bacterial communities. Result showed that sample site A0102 had the highest bacterial abundance and diversity. The heatmap indicated that different samples could be clustered into six groups. Phylogenetic analysis showed that Proteobacteria was the predominant phylum in all samples, followed by Bacteroidetes and Actinobacteria. Alphaproteobacteria and Gammaproteobacteria were the dominant classes. The analysis of predictive metagenomic showed carbon fixation pathways in prokaryotes, nitrogen metabolism, carbon fixation in photosynthetic organisms, photosynthesis and polycyclic aromatic hydrocarbon degradation were enriched in all samples. Redundancy analysis (RDA) identified that dissolved oxygen (DO) and PO43– concentration had positive correlations with the bacterial communities while chemical oxygen demand (COD), dissolved oxygen (DO) and PO43– concentration were significantly associated with microbial functional diversity. This study adds to our knowledge of functional and taxonomic composition of microbial communities.


Sign in / Sign up

Export Citation Format

Share Document