Resistance spot welding simulation: a general finite element formulation of electrothermal contact conditions

2004 ◽  
Vol 153-154 ◽  
pp. 436-441 ◽  
Author(s):  
E. Feulvarch ◽  
V. Robin ◽  
J.M. Bergheau
2016 ◽  
Vol 64 (2) ◽  
pp. 425-434 ◽  
Author(s):  
M. Jafari Vardanjani ◽  
A. Araee ◽  
J. Senkara ◽  
J. Jakubowski ◽  
J. Godek

Abstract Few aspects of shunting effect have been studied so far. Shunting effect in resistance spot welding (RSW) occurs when the electrical current passes through the previous spot welds. Value of this current depends mostly on distance, number, and size of previous spot welds. This will cause some dimensional and metallurgical changes in welding nugget as well as heat affected zone (HAZ). In this study, shunting effect of RSW is considered by finite element method (FEM) and the results are compared to experiments performed on aluminum alloy 2219. Weld spacing together with welding current and time are considered to discover the effect of shunting current in the final quality of nugget. A three factor experiment design has been performed to find the significance of factors and interactive effects, as well as finite element model verification. Electrothermal and mechanical interactions are considered in the FEM. Experimental and numerical solutions have yielded similar results in terms of welding nugget properties. Asymmetry in electrical potential, temperature, stress distribution and geometry of shunted nugget is predicted and verified directly or indirectly. Intense effect of shunting current on nugget height, asymmetric growth of heat affected zone (HAZ) toward previous welding nugget, as well as concentration of alloying elements along grain boundaries are also discovered.


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
P. Rogeon ◽  
R. Raoelison ◽  
P. Carre ◽  
F. Dechalotte

This study deals with resistance spot welding process modeling. Particular attention must be paid to the interfacial conditions, which strongly influence the nugget growth. Imperfect contact conditions are usually used in the macroscopic model to account for the electrical and thermal volume phenomena, which occur near a metallic interface crossed by an electric current. One approach consists in representing microconstriction phenomena by surface contact parameters: The share coefficient and the thermal and electrical contact resistances, which depend on the contact temperature. The aim of this work is to determine the share coefficient and the contact temperature through a numerical model on a microscopic scale. This surface approach does not make it possible to correctly represent the temperature profiles, with the peak temperature, observed in the immediate vicinity of the interface and thus to define, in practice, the contact temperature correctly. That is why another approach is proposed with the introduction of a low thickness layer (third body) at the level of the interface the electric and thermal resistances of which are equivalent to the electrical and thermal contact resistance values. In this case, the parameters of the model are reduced to the thickness of the arbitrarily fixed layer and equivalent electric and thermal conductivities in the thin layer, the partition coefficient and the contact temperature becoming implicit. The two types of thermoelectric contact models are tested within the framework of the numerical simulation of a spot welding test. The nugget growth development is found to be much different with each model.


2017 ◽  
Vol 2017.30 (0) ◽  
pp. 292
Author(s):  
Hiroyuki Kuramae ◽  
Tomoya Niho ◽  
Hirochika Aramaki ◽  
Kengo Oya ◽  
Tomoyoshi Horie

Author(s):  
RAJANARENDER REDDY PINGILI

Electric resistance spot welding has been extensively used for many years in the automotive and aerospace industry for joining body sheet components. Compared to other welding processes such as arc welding process, resistance spot welding is fast, easily automated and easily maintained. Accurate thermal analysis of spot welding electrode could permit critical design parameters to be identified for improved electrode life. It is a complex process where coupled interactions exist between electrical, thermal and mechanical phenomena. On the other hand, finite element method (FEM), which can deal with nonlinear behaviors and complex boundary conditions, provides a powerful tool for studying these interactions and has become the most important method for the analysis of resistance spot welding. In this study, a 2-D finite element model has been developed to predict the transient thermal behavior of spot welding electrodes. The model included heat transfer analysis, electrical field analysis and phase change during melting or solidification and temperature dependant material properties, and also their inter-dependence. The contacts at faying surface and at electrode – work interface, with temperature dependant contact resistances were modeled. Three types of electrode shapes – flat, pointed and dome nose were analyzed. Temperature distribution on each electrode shape was obtained from the finite element analysis. Maximum temperature of 2876 ºC was observed in dome nose electrode in 0.2 seconds of welding time. Dome nose electrode requires a minimum weld time of all the other electrode shapes to get the required nugget size, resulting in the least power consumption. Nugget size was predicted for each electrode shape. Experimental results obtained were in good agreement with the finite element analysis results.


2007 ◽  
Vol 185 (1-3) ◽  
pp. 160-165 ◽  
Author(s):  
Zhigang Hou ◽  
Ill-Soo Kim ◽  
Yuanxun Wang ◽  
Chunzhi Li ◽  
Chuanyao Chen

Sign in / Sign up

Export Citation Format

Share Document